! E05USF Example Program Text
! Mark 30.3 Release. nAG Copyright 2024.
Module e05usfe_mod
! E05USF Example Program Module:
! Parameters and User-defined Routines
! .. Use Statements ..
Use nag_library, Only: nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Accessibility Statements ..
Private
Public :: confun, objfun, start
Contains
Subroutine objfun(mode,m,n,ldfjsl,needfi,x,f,fjsl,nstate,iuser,ruser)
! Evaluates the subfunctions and their 1st derivatives.
! .. Parameters ..
Real (Kind=nag_wp), Parameter :: a(44) = (/8._nag_wp,8._nag_wp, &
10._nag_wp,10._nag_wp,10._nag_wp, &
10._nag_wp,12._nag_wp,12._nag_wp, &
12._nag_wp,12._nag_wp,14._nag_wp, &
14._nag_wp,14._nag_wp,16._nag_wp, &
16._nag_wp,16._nag_wp,18._nag_wp, &
18._nag_wp,20._nag_wp,20._nag_wp, &
20._nag_wp,22._nag_wp,22._nag_wp, &
22._nag_wp,24._nag_wp,24._nag_wp, &
24._nag_wp,26._nag_wp,26._nag_wp, &
26._nag_wp,28._nag_wp,28._nag_wp, &
30._nag_wp,30._nag_wp,30._nag_wp, &
32._nag_wp,32._nag_wp,34._nag_wp, &
36._nag_wp,36._nag_wp,38._nag_wp, &
38._nag_wp,40._nag_wp,42._nag_wp/)
! .. Scalar Arguments ..
Integer, Intent (In) :: ldfjsl, m, n, needfi, nstate
Integer, Intent (Inout) :: mode
! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(m)
Real (Kind=nag_wp), Intent (Inout) :: fjsl(ldfjsl,*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)
! .. Local Scalars ..
Real (Kind=nag_wp) :: temp
Integer :: i
! .. Intrinsic Procedures ..
Intrinsic :: exp
! .. Executable Statements ..
! This is a two-dimensional objective function.
! As an example of using the mode mechanism,
! terminate if any other problem size is supplied.
If (n/=2) Then
mode = -1
End If
If (nstate==1) Then
! This is the first call.
! Take any special action here if desired.
End If
If (mode==0 .And. needfi>0) Then
f(needfi) = x(1) + (0.49_nag_wp-x(1))*exp(-x(2)*(a(needfi)- &
8.0_nag_wp))
Else
Do i = 1, m
temp = exp(-x(2)*(a(i)-8._nag_wp))
If (mode==0 .Or. mode==2) Then
f(i) = x(1) + (0.49_nag_wp-x(1))*temp
End If
If (mode==1 .Or. mode==2) Then
fjsl(i,1) = 1._nag_wp - temp
fjsl(i,2) = -(0.49_nag_wp-x(1))*(a(i)-8._nag_wp)*temp
End If
End Do
End If
Return
End Subroutine objfun
Subroutine confun(mode,ncnln,n,ldcjsl,needc,x,c,cjsl,nstate,iuser,ruser)
! Evaluates the nonlinear constraints and their 1st derivatives.
! .. Scalar Arguments ..
Integer, Intent (In) :: ldcjsl, n, ncnln, nstate
Integer, Intent (Inout) :: mode
! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c(ncnln)
Real (Kind=nag_wp), Intent (Inout) :: cjsl(ldcjsl,*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: needc(ncnln)
! .. Executable Statements ..
! This problem has only one constraint.
! As an example of using the mode mechanism,
! terminate if any other size is supplied.
If (ncnln/=1) Then
mode = -1
End If
If (nstate==1) Then
! First call to CONFUN. Set all Jacobian elements to zero.
! Note that this will only work when 'Derivative Level = 3'
! (the default; see Section 11.1 of the E04USA document).
cjsl(1:ncnln,1:n) = 0._nag_wp
End If
If (needc(1)>0) Then
If (mode==0 .Or. mode==2) Then
c(1) = -0.09_nag_wp - x(1)*x(2) + 0.49_nag_wp*x(2)
End If
If (mode==1 .Or. mode==2) Then
cjsl(1,1) = -x(2)
cjsl(1,2) = -x(1) + 0.49_nag_wp
End If
End If
Return
End Subroutine confun
Subroutine start(npts,quas,n,repeat1,bl,bu,iuser,ruser,mode)
! Sets the initial points.
! A typical user-defined start procedure.
! .. Use Statements ..
Use nag_library, Only: g05kgf, g05saf
! .. Scalar Arguments ..
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: n, npts
Logical, Intent (In) :: repeat1
! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: bl(n), bu(n)
Real (Kind=nag_wp), Intent (Inout) :: quas(n,npts), ruser(*)
Integer, Intent (Inout) :: iuser(*)
! .. Local Scalars ..
Integer :: genid, i, ifail, lstate, subid
! .. Local Arrays ..
Integer, Allocatable :: state(:)
! .. Executable Statements ..
! quas is pre-assigned to zero.
If (repeat1) Then
quas(1,1) = 0.4_nag_wp
quas(2,2) = 1._nag_wp
Else
! Generate a non-repeatable spread of points between bl and bu.
genid = 2
subid = 53
lstate = -1
Allocate (state(lstate))
ifail = 0
Call g05kgf(genid,subid,state,lstate,ifail)
Deallocate (state)
Allocate (state(lstate))
ifail = 0
Call g05kgf(genid,subid,state,lstate,ifail)
Do i = 1, npts
ifail = 0
Call g05saf(n,state,quas(1,i),ifail)
quas(1:n,i) = bl(1:n) + (bu(1:n)-bl(1:n))*quas(1:n,i)
End Do
Deallocate (state)
End If
! Set mode negative to terminate execution for any reason.
mode = 0
Return
End Subroutine start
End Module e05usfe_mod
Program e05usfe
! E05USF Example Main Program
! .. Use Statements ..
Use e05usfe_mod, Only: confun, objfun, start
Use nag_library, Only: dgemv, e05usf, e05zkf, nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: liopts = 740, lopts = 485, m = 44, &
n = 2, nb = 1, nclin = 1, ncnln = 1, &
nin = 5, nout = 6, npts = 3
Integer, Parameter :: sdfjac = n
Integer, Parameter :: lda = nclin
Integer, Parameter :: ldc = ncnln
Integer, Parameter :: ldcjac = ncnln
Integer, Parameter :: ldclda = n + nclin + ncnln
Integer, Parameter :: ldfjac = m
Integer, Parameter :: ldx = n
Integer, Parameter :: listat = n + nclin + ncnln
Logical, Parameter :: repeat1 = .True.
! .. Local Scalars ..
Integer :: i, ifail, j, k, l, sda, sdcjac
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), bl(:), bu(:), c(:,:), &
cjac(:,:,:), clamda(:,:), f(:,:), &
fjac(:,:,:), work(:), x(:,:), y(:)
Real (Kind=nag_wp) :: objf(nb), opts(lopts), ruser(1)
Integer :: info(nb), iopts(liopts), iter(nb), &
iuser(1)
Integer, Allocatable :: istate(:,:)
! .. Intrinsic Procedures ..
Intrinsic :: max
! .. Executable Statements ..
Write (nout,*) 'E05USF Example Program Results'
Flush (nout)
! Skip heading in data file.
Read (nin,*)
If (nclin>0) Then
sda = n
Else
sda = 1
End If
If (ncnln>0) Then
sdcjac = n
Else
sdcjac = 0
End If
Allocate (a(lda,sda),bl(n+nclin+ncnln),bu(n+nclin+ncnln),y(m),c(ldc,nb), &
cjac(ldcjac,sdcjac,nb),f(m,nb),fjac(ldfjac,sdfjac,nb), &
clamda(ldclda,nb),istate(listat,nb),x(ldx,nb),work(max(1,nclin)))
If (nclin>0) Then
Read (nin,*)(a(i,1:sda),i=1,nclin)
End If
Read (nin,*) y(1:m)
Read (nin,*) bl(1:(n+nclin+ncnln))
Read (nin,*) bu(1:(n+nclin+ncnln))
! Initialize the solver.
ifail = 0
Call e05zkf('Initialize = E05USF',iopts,liopts,opts,lopts,ifail)
! Solve the problem.
ifail = -1
Call e05usf(m,n,nclin,ncnln,a,lda,bl,bu,y,confun,objfun,npts,x,ldx, &
start,repeat1,nb,objf,f,fjac,ldfjac,sdfjac,iter,c,ldc,cjac,ldcjac, &
sdcjac,clamda,ldclda,istate,listat,iopts,opts,iuser,ruser,info,ifail)
Select Case (ifail)
Case (0)
l = nb
Case (8)
l = info(nb)
Write (nout,99999) iter(nb)
Case Default
Go To 100
End Select
loop: Do i = 1, l
Write (nout,99998) i
Write (nout,99997) info(i)
Write (nout,99996) 'Varbl'
Do j = 1, n
Write (nout,99995) 'V', j, istate(j,i), x(j,i), clamda(j,i)
End Do
If (nclin>0) Then
Write (nout,99996) 'L Con'
! Below is a call to the level 2 BLAS routine DGEMV.
! This performs the matrix vector multiplication A*X
! (linear constraint values) and puts the result in
! the first NCLIN locations of WORK.
Call dgemv('N',nclin,n,1.0_nag_wp,a,lda,x(1,i),1,0.0_nag_wp,work,1)
Do k = n + 1, n + nclin
j = k - n
Write (nout,99995) 'L', j, istate(k,i), work(j), clamda(k,i)
End Do
End If
If (ncnln>0) Then
Write (nout,99996) 'N Con'
Do k = n + nclin + 1, n + nclin + ncnln
j = k - n - nclin
Write (nout,99995) 'N', j, istate(k,i), c(j,i), clamda(k,i)
End Do
End If
Write (nout,99994) objf(i)
Write (nout,99993)
Write (nout,99992)(clamda(k,i),k=1,n+nclin+ncnln)
If (l==1) Then
Exit loop
End If
Write (nout,*)
Write (nout,*) &
' ------------------------------------------------------ '
End Do loop
100 Continue
99999 Format (1X,I20,'starting points converged')
99998 Format (/,1X,'Solution number',I16)
99997 Format (/,1X,'Local minimization exited with code',I5)
99996 Format (/,1X,A,2X,'Istate',3X,'Value',9X,'Lagr Mult',/)
99995 Format (1X,A,2(1X,I3),4X,F12.4,2X,F12.4)
99994 Format (/,1X,'Final objective value = ',1X,F12.4)
99993 Format (/,1X,'QP multipliers')
99992 Format (1X,F12.4)
End Program e05usfe