Program e04rffe
! E04RFF Example Program Text
! Compute the nearest correlation matrix in Frobenius norm
! using nonlinear semidefinite programming. By default,
! preserve the nonzero structure of the input matrix
! (preserve_structure = .True.).
! Mark 30.3 Release. nAG Copyright 2024.
! .. Use Statements ..
Use, Intrinsic :: iso_c_binding, Only: c_null_ptr, &
c_ptr
Use nag_library, Only: e04raf, e04rff, e04rnf, e04rzf, e04svf, e04zmf, &
nag_wp, x04caf
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Logical, Parameter :: preserve_structure = .True.
! .. Local Scalars ..
Type (c_ptr) :: h
Integer :: dima, i, idblk, idx, ifail, inform, &
j, n, nblk, nnzasum, nnzc, nnzh, &
nnzu, nnzua, nnzuc, nvar
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), g(:,:), hmat(:), x(:)
Real (Kind=nag_wp) :: rdummy(1), rinfo(32), stats(32)
Integer, Allocatable :: blksizea(:), icola(:), icolh(:), &
irowa(:), irowh(:), nnza(:)
Integer :: idummy(1)
! .. Executable Statements ..
Write (nout,*) 'E04RFF Example Program Results'
Write (nout,*)
Flush (nout)
! Skip heading in data file.
Read (nin,*)
! Read in the problem size.
Read (nin,*) n
Allocate (g(n,n))
! Read in the matrix G.
Read (nin,*)(g(i,1:n),i=1,n)
! Symmetrize G: G = (G + G')/2
Do j = 2, n
Do i = 1, j - 1
g(i,j) = (g(i,j)+g(j,i))/2.0_nag_wp
g(j,i) = g(i,j)
End Do
End Do
! Initialize handle.
h = c_null_ptr
! There are as many variables as nonzeros above the main diagonal in
! the input matrix. The variables are corrections of these elements.
nvar = 0
Do j = 2, n
Do i = 1, j - 1
If (.Not. preserve_structure .Or. g(i,j)/=0.0_nag_wp) Then
nvar = nvar + 1
End If
End Do
End Do
Allocate (x(nvar))
! Initialize an empty problem handle with NVAR variables.
ifail = 0
Call e04raf(h,nvar,ifail)
! Set up the objective - minimize Frobenius norm of the corrections.
! Our variables are stored as a vector thus, just minimize
! sum of squares of the corrections --> H is identity matrix, c = 0.
nnzc = 0
nnzh = nvar
Allocate (irowh(nnzh),icolh(nnzh),hmat(nnzh))
Do i = 1, nvar
irowh(i) = i
icolh(i) = i
hmat(i) = 1.0_nag_wp
End Do
! Add the quadratic objective to the handle.
ifail = 0
Call e04rff(h,nnzc,idummy,rdummy,nnzh,irowh,icolh,hmat,ifail)
! Construct linear matrix inequality to request that
! matrix G with corrections X is positive semidefinite.
! (Don't forget the sign at A_0!)
! How many nonzeros do we need? Full triangle for A_0 and
! one nonzero element for each A_i.
nnzasum = n*(n+1)/2 + nvar
Allocate (nnza(nvar+1),irowa(nnzasum),icola(nnzasum),a(nnzasum))
nnza(1) = n*(n+1)/2
nnza(2:nvar+1) = 1
! Copy G to A_0, only upper triangle with different sign (because -A_0)
! and set the diagonal to 1.0 as that's what we want independently
! of what was in G.
idx = 1
Do j = 1, n
Do i = 1, j - 1
irowa(idx) = i
icola(idx) = j
a(idx) = -g(i,j)
idx = idx + 1
End Do
! Unit diagonal.
irowa(idx) = j
icola(idx) = j
a(idx) = -1.0_nag_wp
idx = idx + 1
End Do
! A_i has just one nonzero - it binds x_i with its position as
! a correction.
Do j = 2, n
Do i = 1, j - 1
If (.Not. preserve_structure .Or. g(i,j)/=0.0_nag_wp) Then
irowa(idx) = i
icola(idx) = j
a(idx) = 1.0_nag_wp
idx = idx + 1
End If
End Do
End Do
! Just one matrix inequality of the dimension of the original matrix.
nblk = 1
Allocate (blksizea(nblk))
dima = n
blksizea(:) = (/dima/)
! Add the constraint to the problem formulation.
idblk = 0
ifail = 0
Call e04rnf(h,nvar,dima,nnza,nnzasum,irowa,icola,a,nblk,blksizea,idblk, &
ifail)
! Set optional arguments of the solver.
ifail = 0
Call e04zmf(h,'Print Options = No',ifail)
ifail = 0
Call e04zmf(h,'Initial X = Automatic',ifail)
! Pass the handle to the solver, we are not interested in
! Lagrangian multipliers.
nnzu = 0
nnzuc = 0
nnzua = 0
ifail = 0
Call e04svf(h,nvar,x,nnzu,rdummy,nnzuc,rdummy,nnzua,rdummy,rinfo,stats, &
inform,ifail)
! Destroy the handle.
ifail = 0
Call e04rzf(h,ifail)
! Form the new nearest correlation matrix as the sum
! of G and the correction X.
idx = 1
Do j = 1, n
Do i = 1, j - 1
If (.Not. preserve_structure .Or. g(i,j)/=0.0_nag_wp) Then
g(i,j) = g(i,j) + x(idx)
idx = idx + 1
End If
End Do
g(j,j) = 1.0_nag_wp
End Do
! Print the matrix.
ifail = 0
Call x04caf('Upper','N',n,n,g,n,'Nearest Correlation Matrix',ifail)
End Program e04rffe