Program e02rafe
! E02RAF Example Program Text
! Mark 30.3 Release. nAG Copyright 2024.
! .. Use Statements ..
Use nag_library, Only: c02abf, e02raf, nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: k = 4, m = 4, nout = 6
Integer, Parameter :: ia = k + 1
Integer, Parameter :: ib = m + 1
Integer, Parameter :: ic = ia + ib - 1
Integer, Parameter :: jw = ib*(2*ib+3)
! .. Local Scalars ..
Integer :: i, ifail, itmax, polish
! .. Local Arrays ..
Complex (Kind=nag_wp) :: z(max(k,m))
Real (Kind=nag_wp) :: a(ia), b(ib), berr(max(k,m)), c(ic), &
cond(max(k,m)), dd(ia+ib), w(jw)
Integer :: conv(max(k,m))
! .. Intrinsic Procedures ..
Intrinsic :: max, real
! .. Executable Statements ..
Write (nout,*) 'E02RAF Example Program Results'
! Power series coefficients in C
c(1) = 1.0E0_nag_wp
Do i = 1, ic - 1
c(i+1) = c(i)/real(i,kind=nag_wp)
End Do
ifail = 0
Call e02raf(ia,ib,c,ic,a,b,w,jw,ifail)
Write (nout,*)
Write (nout,*) 'The given series coefficients are'
Write (nout,99999) c(1:ic)
Write (nout,*)
Write (nout,*) 'Numerator coefficients'
Write (nout,99999) a(1:ia)
Write (nout,*)
Write (nout,*) 'Denominator coefficients'
Write (nout,99999) b(1:ib)
! Calculate zeros of the approximant using C02ABF
! First need to reverse order of coefficients
dd(ia:1:-1) = a(1:ia)
itmax = 30
polish = 0
ifail = 0
Call c02abf(dd,k,itmax,polish,z,berr,cond,conv,ifail)
Write (nout,*)
Write (nout,*) 'Zeros of approximant are at'
Write (nout,*)
Write (nout,*) ' Real part Imag part'
Write (nout,99998)(z(i),i=1,k)
! Calculate poles of the approximant using C02ABF
! Reverse order of coefficients
dd(ib:1:-1) = b(1:ib)
ifail = 0
Call c02abf(dd,m,itmax,polish,z,berr,cond,conv,ifail)
Write (nout,*)
Write (nout,*) 'Poles of approximant are at'
Write (nout,*)
Write (nout,*) ' Real part Imag part'
Write (nout,99998)(z(i),i=1,k)
99999 Format (1X,5E13.4)
99998 Format (1X,2E13.4)
End Program e02rafe