/* nag_fit_dim1_cheb_arb (e02adc) Example Program.
*
* Copyright 2024 Numerical Algorithms Group.
*
* Mark 30.3, 2024.
*
*/
#include <nag.h>
#include <stdio.h>
int main(void) {
#define A(I, J) a[(I)*tda + J]
Integer exit_status = 0, i, iwght, j, k, m, r, tda;
NagError fail;
double *a = 0, *ak = 0, d1, fit, *s = 0, *w = 0, *x = 0, x1, xarg, xcapr, xm,
*y = 0;
INIT_FAIL(fail);
printf("nag_fit_dim1_cheb_arb (e02adc) Example Program Results \n");
/* Skip heading in data file */
scanf("%*[^\n]");
while ((scanf("%" NAG_IFMT "", &m)) != EOF)
{
if (m >= 2) {
if (!(x = NAG_ALLOC(m, double)) || !(y = NAG_ALLOC(m, double)) ||
!(w = NAG_ALLOC(m, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
} else {
printf("Invalid m.\n");
exit_status = 1;
return exit_status;
}
scanf("%" NAG_IFMT "", &k);
if (k >= 1) {
if (!(a = NAG_ALLOC((k + 1) * (k + 1), double)) ||
!(s = NAG_ALLOC(k + 1, double)) || !(ak = NAG_ALLOC(k + 1, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
tda = k + 1;
} else {
printf("Invalid k.\n");
exit_status = 1;
return exit_status;
}
scanf("%" NAG_IFMT "", &iwght);
for (r = 0; r < m; ++r) {
if (iwght != 1) {
scanf("%lf", &x[r]);
scanf("%lf", &y[r]);
scanf("%lf", &w[r]);
} else {
scanf("%lf", &x[r]);
scanf("%lf", &y[r]);
w[r] = 1.0;
}
}
/* nag_fit_dim1_cheb_arb (e02adc).
* Computes the coefficients of a Chebyshev series
* polynomial for arbitrary data
*/
nag_fit_dim1_cheb_arb(m, k + 1, tda, x, y, w, a, s, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_fit_dim1_cheb_arb (e02adc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
for (i = 0; i <= k; ++i) {
printf("\n");
printf(" %s%4" NAG_IFMT "%s%12.2e\n", "Degree", i,
" R.M.S. residual =", s[i]);
printf("\n J Chebyshev coeff A(J) \n");
for (j = 0; j < i + 1; ++j)
printf(" %3" NAG_IFMT "%15.4f\n", j + 1, A(i, j));
}
for (j = 0; j < k + 1; ++j)
ak[j] = A(k, j);
x1 = x[0];
xm = x[m - 1];
printf("\n %s%4" NAG_IFMT "\n\n",
"Polynomial approximation and residuals for degree", k);
printf(" R Abscissa Weight Ordinate Polynomial Residual \n");
for (r = 1; r <= m; ++r) {
xcapr = (x[r - 1] - x1 - (xm - x[r - 1])) / (xm - x1);
/* nag_fit_dim1_cheb_eval (e02aec).
* Evaluates the coefficients of a Chebyshev series
* polynomial
*/
nag_fit_dim1_cheb_eval(k + 1, ak, xcapr, &fit, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_fit_dim1_cheb_eval (e02aec).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
d1 = fit - y[r - 1];
printf(" %3" NAG_IFMT "%11.4f%11.4f%11.4f%11.4f%11.2e\n", r, x[r - 1],
w[r - 1], y[r - 1], fit, d1);
if (r < m) {
xarg = (x[r - 1] + x[r]) * 0.5;
xcapr = (xarg - x1 - (xm - xarg)) / (xm - x1);
/* nag_fit_dim1_cheb_eval (e02aec), see above. */
nag_fit_dim1_cheb_eval(k + 1, ak, xcapr, &fit, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_fit_dim1_cheb_eval (e02aec).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf(" %11.4f %11.4f\n", xarg, fit);
}
}
END:
NAG_FREE(a);
NAG_FREE(x);
NAG_FREE(y);
NAG_FREE(w);
NAG_FREE(s);
NAG_FREE(ak);
}
return exit_status;
}