------------------------------------------------------------------------------ E04ST, Interior point method for large-scale nonlinear optimization problems ------------------------------------------------------------------------------ Begin of Options Print File = 50 * U Print Level = 2 * U Monitoring File = 51 * U Monitoring Level = 5 * U Infinite Bound Size = 1.00000E+20 * d Task = Minimize * d Stats Time = No * d Time Limit = 6.00000E+01 * U Verify Derivatives = No * d Hessian Mode = Auto * d Matrix Ordering = Auto * d Outer Iteration Limit = 26 * U Stop Tolerance 1 = 2.50000E-08 * U End of Options List of options: Name Value # times used acceptable_tol = 2.5e-06 1 bound_relax_factor = 1e-08 2 check_derivatives_for_naninf = yes 1 derivative_test = none 1 hessian_approximation = exact 7 limited_memory_max_history = 6 0 ma97_order = auto 3 ma97_scaling = dynamic 3 ma97_u = 1e-08 3 max_cpu_time = 60 1 max_iter = 26 1 nag_monitoring_file = 51 1 nag_monitoring_level = 5 1 nag_print_file = 50 1 nag_print_level = 2 1 nlp_lower_bound_inf = -1e+20 1 nlp_scaling_method = gradient-based 1 nlp_upper_bound_inf = 1e+20 1 obj_scaling_factor = 1 1 print_timing_statistics = no 1 tol = 2.5e-08 3 ****************************************************************************** This program contains Ipopt, a library for large-scale nonlinear optimization. Ipopt is released as open source code under the Eclipse Public License (EPL). For more information visit http://projects.coin-or.org/Ipopt ****************************************************************************** This version is built and supported by Numerical Algorithms Group (NAG) Ltd. For support email support@nag.com ****************************************************************************** This is Ipopt version 3.12.4, running with linear solver ma97. Number of nonzeros in equality constraint Jacobian...: 4 Number of nonzeros in inequality constraint Jacobian.: 8 Number of nonzeros in Lagrangian Hessian.............: 10 Scaling parameter for objective function = 1.000000e+00 objective scaling factor = 1 No x scaling provided No c scaling provided No d scaling provided DenseVector "original x_L unscaled" with 4 elements: original x_L unscaled[ 1]= 0.0000000000000000e+00 original x_L unscaled[ 2]= 0.0000000000000000e+00 original x_L unscaled[ 3]= 0.0000000000000000e+00 original x_L unscaled[ 4]= 0.0000000000000000e+00 DenseVector "original x_U unscaled" with 0 elements: DenseVector "original d_L unscaled" with 2 elements: original d_L unscaled[ 1]= 2.1000000000000000e+01 original d_L unscaled[ 2]= 5.0000000000000000e+00 DenseVector "original d_U unscaled" with 0 elements: DenseVector "modified x_L scaled" with 4 elements: modified x_L scaled[ 1]=-1.0000000000000000e-08 modified x_L scaled[ 2]=-1.0000000000000000e-08 modified x_L scaled[ 3]=-1.0000000000000000e-08 modified x_L scaled[ 4]=-1.0000000000000000e-08 DenseVector "modified x_U scaled" with 0 elements: DenseVector "modified d_L scaled" with 2 elements: modified d_L scaled[ 1]= 2.0999999790000000e+01 modified d_L scaled[ 2]= 4.9999999500000003e+00 DenseVector "modified d_U scaled" with 0 elements: DenseVector "initial x unscaled" with 4 elements: initial x unscaled[ 1]= 1.0000000000000000e+00 initial x unscaled[ 2]= 1.0000000000000000e+00 initial x unscaled[ 3]= 1.0000000000000000e+00 initial x unscaled[ 4]= 1.0000000000000000e+00 Initial values of x sufficiently inside the bounds. Initial values of s sufficiently inside the bounds. CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-2.3550000000000001e+01 RHS[ 0][ 0][ 2]=-2.5750000000000000e+01 RHS[ 0][ 0][ 3]=-3.8000000000000000e+01 RHS[ 0][ 0][ 4]=-3.9500000000000000e+01 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 1.0000000000000000e+00 RHS[ 0][ 1][ 2]= 1.0000000000000000e+00 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: Homogeneous vector, all elements have value 0.0000000000000000e+00 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: Homogeneous vector, all elements have value 0.0000000000000000e+00 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 0.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Uninitialized! Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Homogeneous vector, all elements have value 1.0000000000000000e+00 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: Homogeneous vector, all elements have value 1.0000000000000000e+00 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (0) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (1) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (2) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (3) KKT[3][0][ 1, 1]= 1.1900871710465619e+01 (4) KKT[3][0][ 1, 2]= 1.1832734374958813e+01 (5) KKT[3][0][ 1, 3]= 3.4542393087661402e+01 (6) KKT[3][0][ 1, 4]= 5.1880501644602440e+01 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 0.000000000000000e+00 (1) KKT[2][1] = 0.000000000000000e+00 (2) KKT[3][1] = 0.000000000000000e+00 (3) KKT[4][1] = 0.000000000000000e+00 (4) KKT[2][2] = 0.000000000000000e+00 (5) KKT[3][2] = 0.000000000000000e+00 (6) KKT[4][2] = 0.000000000000000e+00 (7) KKT[3][3] = 0.000000000000000e+00 (8) KKT[4][3] = 0.000000000000000e+00 (9) KKT[4][4] = 0.000000000000000e+00 (10) KKT[1][1] = 1.000000000000000e+00 (11) KKT[2][2] = 1.000000000000000e+00 (12) KKT[3][3] = 1.000000000000000e+00 (13) KKT[4][4] = 1.000000000000000e+00 (14) KKT[5][5] = 1.000000000000000e+00 (15) KKT[6][6] = 1.000000000000000e+00 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[9][1] = 2.300000000000000e+00 (22) KKT[9][2] = 5.600000000000000e+00 (23) KKT[9][3] = 1.110000000000000e+01 (24) KKT[9][4] = 1.300000000000000e+00 (25) KKT[8][1] = 1.190087171046562e+01 (26) KKT[8][2] = 1.183273437495881e+01 (27) KKT[8][3] = 3.454239308766140e+01 (28) KKT[8][4] = 5.188050164460244e+01 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 HSL_MA97: Make heuristic choice of AMD or MeTiS HSL_MA97: Used AMD HSL_MA97: PREDICTED nfactor 45.000000, maxfront 9 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -2.3550000000000001e+01 Trhs[ 0, 1] = -2.5750000000000000e+01 Trhs[ 0, 2] = -3.8000000000000000e+01 Trhs[ 0, 3] = -3.9500000000000000e+01 Trhs[ 0, 4] = 1.0000000000000000e+00 Trhs[ 0, 5] = 1.0000000000000000e+00 Trhs[ 0, 6] = 0.0000000000000000e+00 Trhs[ 0, 7] = 0.0000000000000000e+00 Trhs[ 0, 8] = 0.0000000000000000e+00 HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9 Ma97SolverInterface::Factorization: ma97_factor_solve took 0.000 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = 1.1433520952693961e-01 Tsol[ 0, 1] = -1.7537673840920132e-01 Tsol[ 0, 2] = 1.0739304065987820e-01 Tsol[ 0, 3] = -4.6351511777616747e-02 Tsol[ 0, 4] = 5.9037524177086054e-01 Tsol[ 0, 5] = 4.1266703283417938e-01 Tsol[ 0, 6] = -1.7438577687930067e+01 Tsol[ 0, 7] = -4.0962475822913946e-01 Tsol[ 0, 8] = -5.8733296716582062e-01 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]= 1.1433520952693961e-01 SOL[ 0][ 0][ 2]=-1.7537673840920132e-01 SOL[ 0][ 0][ 3]= 1.0739304065987820e-01 SOL[ 0][ 0][ 4]=-4.6351511777616747e-02 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 5.9037524177086054e-01 SOL[ 0][ 1][ 2]= 4.1266703283417938e-01 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-1.7438577687930067e+01 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]=-4.0962475822913946e-01 SOL[ 0][ 3][ 2]=-5.8733296716582062e-01 Least square estimates max(y_c) = 1.743858e+01, max(y_d) = 5.873330e-01 Total number of variables............................: 4 variables with only lower bounds: 4 variables with lower and upper bounds: 0 variables with only upper bounds: 0 Total number of equality constraints.................: 1 Total number of inequality constraints...............: 2 inequality constraints with only lower bounds: 2 inequality constraints with lower and upper bounds: 0 inequality constraints with only upper bounds: 0 Convergence Check: overall_error = 8.9156501027688250e+01 IpData().tol() = 2.4999999999999999e-08 dual_inf = 5.9037524177086054e-01 dual_inf_tol_ = 1.0000000000000000e+00 constr_viol = 3.0000000000000000e+00 constr_viol_tol_ = 1.0000000000000000e-04 compl_inf = 8.9156501027688250e+01 compl_inf_tol_ = 1.0000000000000000e-04 obj val update iter = 0 Acceptable Check: overall_error = 8.9156501027688250e+01 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 5.9037524177086054e-01 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 3.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 8.9156501027688250e+01 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 1.3080000000000001e+02 last_obj_val = -1.0000000000000001e+50 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 7.6452599388379204e+47 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 0 ************************************************** *** Update HessianMatrix for Iteration 0: ************************************************** ************************************************** *** Summary of Iteration: 0: ************************************************** iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 0 1.3080000e+02 3.00e+00 5.90e-01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0 y ************************************************** *** Beginning Iteration 0 from the following point: ************************************************** Current barrier parameter mu = 1.0000000000000001e-01 Current fraction-to-the-boundary parameter tau = 9.8999999999999999e-01 ||curr_x||_inf = 1.0000000000000000e+00 ||curr_s||_inf = 1.1015650081768825e+02 ||curr_y_c||_inf = 1.7438577687930067e+01 ||curr_y_d||_inf = 5.8733296716582062e-01 ||curr_z_L||_inf = 1.0000000000000000e+00 ||curr_z_U||_inf = 0.0000000000000000e+00 ||curr_v_L||_inf = 1.0000000000000000e+00 ||curr_v_U||_inf = 0.0000000000000000e+00 No search direction has been computed yet. DenseVector "curr_x" with 4 elements: curr_x[ 1]= 1.0000000000000000e+00 curr_x[ 2]= 1.0000000000000000e+00 curr_x[ 3]= 1.0000000000000000e+00 curr_x[ 4]= 1.0000000000000000e+00 DenseVector "curr_s" with 2 elements: curr_s[ 1]= 1.1015650081768825e+02 curr_s[ 2]= 2.0300000000000001e+01 DenseVector "curr_y_c" with 1 elements: curr_y_c[ 1]=-1.7438577687930067e+01 DenseVector "curr_y_d" with 2 elements: curr_y_d[ 1]=-4.0962475822913946e-01 curr_y_d[ 2]=-5.8733296716582062e-01 DenseVector "curr_slack_x_L" with 4 elements: curr_slack_x_L[ 1]= 1.0000000099999999e+00 curr_slack_x_L[ 2]= 1.0000000099999999e+00 curr_slack_x_L[ 3]= 1.0000000099999999e+00 curr_slack_x_L[ 4]= 1.0000000099999999e+00 DenseVector "curr_slack_x_U" with 0 elements: DenseVector "curr_z_L" with 4 elements: Homogeneous vector, all elements have value 1.0000000000000000e+00 DenseVector "curr_z_U" with 0 elements: Homogeneous vector, all elements have value 1.0000000000000000e+00 DenseVector "curr_slack_s_L" with 2 elements: curr_slack_s_L[ 1]= 8.9156501027688250e+01 curr_slack_s_L[ 2]= 1.5300000050000001e+01 DenseVector "curr_slack_s_U" with 0 elements: DenseVector "curr_v_L" with 2 elements: Homogeneous vector, all elements have value 1.0000000000000000e+00 DenseVector "curr_v_U" with 0 elements: Homogeneous vector, all elements have value 1.0000000000000000e+00 DenseVector "curr_grad_lag_x" with 4 elements: curr_grad_lag_x[ 1]=-1.1433520952693854e-01 curr_grad_lag_x[ 2]= 1.7537673840920576e-01 curr_grad_lag_x[ 3]=-1.0739304065987199e-01 curr_grad_lag_x[ 4]= 4.6351511777615428e-02 DenseVector "curr_grad_lag_s" with 2 elements: curr_grad_lag_s[ 1]=-5.9037524177086054e-01 curr_grad_lag_s[ 2]=-4.1266703283417938e-01 ***Current NLP Values for Iteration 0: (scaled) (unscaled) Objective...............: 1.3080000000000001e+02 1.3080000000000001e+02 Dual infeasibility......: 5.9037524177086054e-01 5.9037524177086054e-01 Constraint violation....: 3.0000000000000000e+00 3.0000000000000000e+00 Complementarity.........: 8.9156501027688250e+01 8.9156501027688250e+01 Overall NLP error.......: 8.9156501027688250e+01 8.9156501027688250e+01 DenseVector "grad_f" with 4 elements: grad_f[ 1]= 2.4550000000000001e+01 grad_f[ 2]= 2.6750000000000000e+01 grad_f[ 3]= 3.9000000000000000e+01 grad_f[ 4]= 4.0500000000000000e+01 DenseVector "curr_c" with 1 elements: curr_c[ 1]= 3.0000000000000000e+00 DenseVector "curr_d" with 2 elements: curr_d[ 1]= 1.1015650081768825e+02 curr_d[ 2]= 2.0300000000000001e+01 DenseVector "curr_d - curr_s" with 2 elements: curr_d - curr_s[ 1]= 0.0000000000000000e+00 curr_d - curr_s[ 2]= 0.0000000000000000e+00 GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements: jac_c[ 1, 1]= 1.0000000000000000e+00 (0) jac_c[ 1, 2]= 1.0000000000000000e+00 (1) jac_c[ 1, 3]= 1.0000000000000000e+00 (2) jac_c[ 1, 4]= 1.0000000000000000e+00 (3) GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements: jac_d[ 2, 1]= 2.2999999999999998e+00 (0) jac_d[ 2, 2]= 5.5999999999999996e+00 (1) jac_d[ 2, 3]= 1.1100000000000000e+01 (2) jac_d[ 2, 4]= 1.3000000000000000e+00 (3) jac_d[ 1, 1]= 1.1900871710465619e+01 (4) jac_d[ 1, 2]= 1.1832734374958813e+01 (5) jac_d[ 1, 3]= 3.4542393087661402e+01 (6) jac_d[ 1, 4]= 5.1880501644602440e+01 (7) SymTMatrix "W" of dimension 4 with 10 nonzero elements: W[ 1, 1]= 4.0078791515727900e-02 (0) W[ 2, 1]=-3.5734258038424687e-04 (1) W[ 3, 1]=-3.8555383673037166e-02 (2) W[ 4, 1]=-1.1660652623064897e-03 (3) W[ 2, 2]= 2.7311182929367437e-02 (4) W[ 3, 2]=-2.6162581778132361e-02 (5) W[ 4, 2]=-7.9125857085083240e-04 (6) W[ 3, 3]= 1.5009060072718036e-01 (7) W[ 4, 3]=-8.5372635276010855e-02 (8) W[ 4, 4]= 8.7329959109168187e-02 (9) ************************************************** *** Update Barrier Parameter for Iteration 0: ************************************************** Optimality Error for Barrier Sub-problem = 8.905650e+01 Barrier Parameter: 1.000000e-01 ************************************************** *** Solving the Primal Dual System for Iteration 0: ************************************************** Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]= 7.8566579147306148e-01 RHS[ 0][ 0][ 2]= 1.0753777394092057e+00 RHS[ 0][ 0][ 3]= 7.9260796034012804e-01 RHS[ 0][ 0][ 4]= 9.4635251277761545e-01 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 4.0850413502895422e-01 RHS[ 0][ 1][ 2]= 5.8079801947476173e-01 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 3.0000000000000000e+00 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]= 0.0000000000000000e+00 RHS[ 0][ 3][ 2]= 0.0000000000000000e+00 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 4.0078791515727900e-02 (0) Term: 0[ 2, 1]=-3.5734258038424687e-04 (1) Term: 0[ 3, 1]=-3.8555383673037166e-02 (2) Term: 0[ 4, 1]=-1.1660652623064897e-03 (3) Term: 0[ 2, 2]= 2.7311182929367437e-02 (4) Term: 0[ 3, 2]=-2.6162581778132361e-02 (5) Term: 0[ 4, 2]=-7.9125857085083240e-04 (6) Term: 0[ 3, 3]= 1.5009060072718036e-01 (7) Term: 0[ 4, 3]=-8.5372635276010855e-02 (8) Term: 0[ 4, 4]= 8.7329959109168187e-02 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 9.9999999000000017e-01 Term: 1[ 2]= 9.9999999000000017e-01 Term: 1[ 3]= 9.9999999000000017e-01 Term: 1[ 4]= 9.9999999000000017e-01 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 1.1216232001853035e-02 KKT[1][1][ 2]= 6.5359476910589936e-02 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (0) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (1) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (2) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (3) KKT[3][0][ 1, 1]= 1.1900871710465619e+01 (4) KKT[3][0][ 1, 2]= 1.1832734374958813e+01 (5) KKT[3][0][ 1, 3]= 3.4542393087661402e+01 (6) KKT[3][0][ 1, 4]= 5.1880501644602440e+01 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 4.007879151572790e-02 (1) KKT[2][1] = -3.573425803842469e-04 (2) KKT[3][1] = -3.855538367303717e-02 (3) KKT[4][1] = -1.166065262306490e-03 (4) KKT[2][2] = 2.731118292936744e-02 (5) KKT[3][2] = -2.616258177813236e-02 (6) KKT[4][2] = -7.912585708508324e-04 (7) KKT[3][3] = 1.500906007271804e-01 (8) KKT[4][3] = -8.537263527601086e-02 (9) KKT[4][4] = 8.732995910916819e-02 (10) KKT[1][1] = 9.999999900000002e-01 (11) KKT[2][2] = 9.999999900000002e-01 (12) KKT[3][3] = 9.999999900000002e-01 (13) KKT[4][4] = 9.999999900000002e-01 (14) KKT[5][5] = 1.121623200185303e-02 (15) KKT[6][6] = 6.535947691058994e-02 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[9][1] = 2.300000000000000e+00 (22) KKT[9][2] = 5.600000000000000e+00 (23) KKT[9][3] = 1.110000000000000e+01 (24) KKT[9][4] = 1.300000000000000e+00 (25) KKT[8][1] = 1.190087171046562e+01 (26) KKT[8][2] = 1.183273437495881e+01 (27) KKT[8][3] = 3.454239308766140e+01 (28) KKT[8][4] = 5.188050164460244e+01 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = 7.8566579147306148e-01 Trhs[ 0, 1] = 1.0753777394092057e+00 Trhs[ 0, 2] = 7.9260796034012804e-01 Trhs[ 0, 3] = 9.4635251277761545e-01 Trhs[ 0, 4] = 4.0850413502895422e-01 Trhs[ 0, 5] = 5.8079801947476173e-01 Trhs[ 0, 6] = 3.0000000000000000e+00 Trhs[ 0, 7] = 0.0000000000000000e+00 Trhs[ 0, 8] = 0.0000000000000000e+00 HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9 Ma97SolverInterface::Factorization: ma97_factor_solve took 0.000 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = 1.4834722739123620e+00 Tsol[ 0, 1] = 1.4602809304393991e+00 Tsol[ 0, 2] = -1.2402495971439942e-01 Tsol[ 0, 3] = 1.8027175536263826e-01 Tsol[ 0, 4] = 4.0002199770001418e+01 Tsol[ 0, 5] = 1.0447235669600664e+01 Tsol[ 0, 6] = -1.4740319268725783e+00 Tsol[ 0, 7] = 4.0169818175853800e-02 Tsol[ 0, 8] = 1.0202783905199447e-01 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]= 1.4834722739123620e+00 SOL[ 0][ 0][ 2]= 1.4602809304393991e+00 SOL[ 0][ 0][ 3]=-1.2402495971439942e-01 SOL[ 0][ 0][ 4]= 1.8027175536263826e-01 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 4.0002199770001418e+01 SOL[ 0][ 1][ 2]= 1.0447235669600664e+01 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-1.4740319268725783e+00 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 4.0169818175853800e-02 SOL[ 0][ 3][ 2]= 1.0202783905199447e-01 Number of trial factorizations performed: 1 Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]=-1.4155343563970746e-15 resid[ 0][ 2]=-9.1593399531575415e-16 resid[ 0][ 3]=-9.7144514654701197e-16 resid[ 0][ 4]=-3.6359804056473877e-15 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 0.0000000000000000e+00 resid[ 1][ 2]= 1.1102230246251565e-16 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]= 0.0000000000000000e+00 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]= 7.1054273576010019e-15 resid[ 3][ 2]=-1.7763568394002505e-15 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]= 0.0000000000000000e+00 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 7.1054273576010019e-15 resid[ 6][ 2]= 0.0000000000000000e+00 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 3.635980e-15 max-norm resid_s 1.110223e-16 max-norm resid_c 0.000000e+00 max-norm resid_d 7.105427e-15 max-norm resid_zL 0.000000e+00 max-norm resid_zU 0.000000e+00 max-norm resid_vL 7.105427e-15 max-norm resid_vU 0.000000e+00 nrm_rhs = 8.91e+01 nrm_sol = 4.00e+01 nrm_resid = 7.11e-15 residual_ratio = 5.505578e-17 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-1.4155343563970746e-15 RHS[ 0][ 0][ 2]=-9.1593399531575415e-16 RHS[ 0][ 0][ 3]=-9.7144514654701197e-16 RHS[ 0][ 0][ 4]=-3.6359804056473877e-15 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 7.9696121715166404e-17 RHS[ 0][ 1][ 2]= 1.1102230246251565e-16 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 0.0000000000000000e+00 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]= 7.1054273576010019e-15 RHS[ 0][ 3][ 2]=-1.7763568394002505e-15 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 4.0078791515727900e-02 (0) Term: 0[ 2, 1]=-3.5734258038424687e-04 (1) Term: 0[ 3, 1]=-3.8555383673037166e-02 (2) Term: 0[ 4, 1]=-1.1660652623064897e-03 (3) Term: 0[ 2, 2]= 2.7311182929367437e-02 (4) Term: 0[ 3, 2]=-2.6162581778132361e-02 (5) Term: 0[ 4, 2]=-7.9125857085083240e-04 (6) Term: 0[ 3, 3]= 1.5009060072718036e-01 (7) Term: 0[ 4, 3]=-8.5372635276010855e-02 (8) Term: 0[ 4, 4]= 8.7329959109168187e-02 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 9.9999999000000017e-01 Term: 1[ 2]= 9.9999999000000017e-01 Term: 1[ 3]= 9.9999999000000017e-01 Term: 1[ 4]= 9.9999999000000017e-01 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 1.1216232001853035e-02 KKT[1][1][ 2]= 6.5359476910589936e-02 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (0) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (1) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (2) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (3) KKT[3][0][ 1, 1]= 1.1900871710465619e+01 (4) KKT[3][0][ 1, 2]= 1.1832734374958813e+01 (5) KKT[3][0][ 1, 3]= 3.4542393087661402e+01 (6) KKT[3][0][ 1, 4]= 5.1880501644602440e+01 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 4.007879151572790e-02 (1) KKT[2][1] = -3.573425803842469e-04 (2) KKT[3][1] = -3.855538367303717e-02 (3) KKT[4][1] = -1.166065262306490e-03 (4) KKT[2][2] = 2.731118292936744e-02 (5) KKT[3][2] = -2.616258177813236e-02 (6) KKT[4][2] = -7.912585708508324e-04 (7) KKT[3][3] = 1.500906007271804e-01 (8) KKT[4][3] = -8.537263527601086e-02 (9) KKT[4][4] = 8.732995910916819e-02 (10) KKT[1][1] = 9.999999900000002e-01 (11) KKT[2][2] = 9.999999900000002e-01 (12) KKT[3][3] = 9.999999900000002e-01 (13) KKT[4][4] = 9.999999900000002e-01 (14) KKT[5][5] = 1.121623200185303e-02 (15) KKT[6][6] = 6.535947691058994e-02 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[9][1] = 2.300000000000000e+00 (22) KKT[9][2] = 5.600000000000000e+00 (23) KKT[9][3] = 1.110000000000000e+01 (24) KKT[9][4] = 1.300000000000000e+00 (25) KKT[8][1] = 1.190087171046562e+01 (26) KKT[8][2] = 1.183273437495881e+01 (27) KKT[8][3] = 3.454239308766140e+01 (28) KKT[8][4] = 5.188050164460244e+01 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -1.4155343563970746e-15 Trhs[ 0, 1] = -9.1593399531575415e-16 Trhs[ 0, 2] = -9.7144514654701197e-16 Trhs[ 0, 3] = -3.6359804056473877e-15 Trhs[ 0, 4] = 7.9696121715166404e-17 Trhs[ 0, 5] = 1.1102230246251565e-16 Trhs[ 0, 6] = 0.0000000000000000e+00 Trhs[ 0, 7] = 7.1054273576010019e-15 Trhs[ 0, 8] = -1.7763568394002505e-15 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -1.9460664887003072e-16 Tsol[ 0, 1] = -1.5845427766809172e-16 Tsol[ 0, 2] = 2.9543619982040844e-16 Tsol[ 0, 3] = 5.7624726717714016e-17 Tsol[ 0, 4] = 1.8983095777401935e-15 Tsol[ 0, 5] = 3.7956715547974277e-15 Tsol[ 0, 6] = -8.2190535319189908e-16 Tsol[ 0, 7] = -5.8404241079892719e-17 Tsol[ 0, 8] = 1.3706080488344987e-16 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-1.9460664887003072e-16 SOL[ 0][ 0][ 2]=-1.5845427766809172e-16 SOL[ 0][ 0][ 3]= 2.9543619982040844e-16 SOL[ 0][ 0][ 4]= 5.7624726717714016e-17 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 1.8983095777401935e-15 SOL[ 0][ 1][ 2]= 3.7956715547974277e-15 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-8.2190535319189908e-16 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]=-5.8404241079892719e-17 SOL[ 0][ 3][ 2]= 1.3706080488344987e-16 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]= 1.3877787807814457e-16 resid[ 0][ 2]=-2.7755575615628914e-17 resid[ 0][ 3]=-8.3266726846886741e-17 resid[ 0][ 4]=-4.1633363423443370e-16 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 0.0000000000000000e+00 resid[ 1][ 2]= 0.0000000000000000e+00 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]=-4.4408920985006262e-16 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]=-7.1054273576010019e-15 resid[ 3][ 2]= 1.7763568394002505e-15 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]= 1.1102230246251565e-16 resid[ 4][ 3]=-2.2204460492503131e-16 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]=-7.1054273576010019e-15 resid[ 6][ 2]= 0.0000000000000000e+00 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 4.163336e-16 max-norm resid_s 0.000000e+00 max-norm resid_c 4.440892e-16 max-norm resid_d 7.105427e-15 max-norm resid_zL 2.220446e-16 max-norm resid_zU 0.000000e+00 max-norm resid_vL 7.105427e-15 max-norm resid_vU 0.000000e+00 nrm_rhs = 8.91e+01 nrm_sol = 4.00e+01 nrm_resid = 7.11e-15 residual_ratio = 5.505578e-17 *** Step Calculated for Iteration: 0 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]=-1.4834722739123622e+00 delta[ 0][ 2]=-1.4602809304393993e+00 delta[ 0][ 3]= 1.2402495971439971e-01 delta[ 0][ 4]=-1.8027175536263820e-01 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-4.0002199770001418e+01 delta[ 1][ 2]=-1.0447235669600660e+01 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]= 1.4740319268725774e+00 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-4.0169818175853855e-02 delta[ 3][ 2]=-1.0202783905199433e-01 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]= 5.8347225807763969e-01 delta[ 4][ 2]= 5.6028091483659015e-01 delta[ 4][ 3]=-1.0240249594741500e+00 delta[ 4][ 4]=-7.1972824744007935e-01 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]=-5.5020442359500665e-01 delta[ 6][ 2]=-3.1063819378218505e-01 Component 8: DenseVector "delta[ 7]" with 0 elements: ************************************************** *** Finding Acceptable Trial Point for Iteration 0: ************************************************** --> Starting line search in iteration 0 <-- Mu has changed in line search - resetting watchdog counters. Acceptable Check: overall_error = 8.9156501027688250e+01 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 5.9037524177086054e-01 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 3.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 8.9156501027688250e+01 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 1.3080000000000001e+02 last_obj_val = -1.0000000000000001e+50 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 7.6452599388379204e+47 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 0 The current filter has 0 entries. Relative step size for delta_x = 7.417361e-01 minimal step size ALPHA_MIN = 1.934668E-11 Starting checks for alpha (primal) = 6.67e-01 trial_max is initialized to 3.000000e+04 trial_min is initialized to 3.000000e-04 Checking acceptability for trial step size alpha_primal_test= 6.673532e-01: New values of barrier function = 7.8989662078651492e+01 (reference 1.3007828384293424e+02): New values of constraint violation = 1.0884783964214879e+00 (reference 3.0000000000000000e+00): reference_theta = 3.000000e+00 reference_gradBarrTDelta = -7.753270e+01 Checking sufficient reduction... Succeeded... Checking filter acceptability... Succeeded... reference_theta = 3.000000e+00 reference_gradBarrTDelta = -7.753270e+01 Convergence Check: overall_error = 2.9236515515232938e+01 IpData().tol() = 2.4999999999999999e-08 dual_inf = 2.3566895846196956e-01 dual_inf_tol_ = 1.0000000000000000e+00 constr_viol = 9.9794031750440659e-01 constr_viol_tol_ = 1.0000000000000000e-04 compl_inf = 2.9236515515232938e+01 compl_inf_tol_ = 1.0000000000000000e-04 obj val update iter = 1 Acceptable Check: overall_error = 2.9236515515232938e+01 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 2.3566895846196956e-01 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 9.9794031750440659e-01 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 2.9236515515232938e+01 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 7.8782624220870048e+01 last_obj_val = 1.3080000000000001e+02 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 6.6026457348383438e-01 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 1 ************************************************** *** Update HessianMatrix for Iteration 1: ************************************************** ************************************************** *** Summary of Iteration: 1: ************************************************** iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 1 7.8782624e+01 9.98e-01 2.36e-01 -1.0 4.00e+01 - 9.67e-01 6.67e-01f 1 ************************************************** *** Beginning Iteration 1 from the following point: ************************************************** Current barrier parameter mu = 1.0000000000000001e-01 Current fraction-to-the-boundary parameter tau = 9.8999999999999999e-01 ||curr_x||_inf = 1.0827684571557799e+00 ||curr_s||_inf = 8.3460903694136817e+01 ||curr_y_c||_inf = 1.6454877724095773e+01 ||curr_y_d||_inf = 6.5542157485186969e-01 ||curr_z_L||_inf = 1.5640854064665453e+00 ||curr_z_U||_inf = 0.0000000000000000e+00 ||curr_v_L||_inf = 6.9968328506144539e-01 ||curr_v_U||_inf = 0.0000000000000000e+00 ||delta_x||_inf = 1.4834722739123622e+00 ||delta_s||_inf = 4.0002199770001418e+01 ||delta_y_c||_inf = 1.4740319268725774e+00 ||delta_y_d||_inf = 1.0202783905199433e-01 ||delta_z_L||_inf = 1.0240249594741500e+00 ||delta_z_U||_inf = 0.0000000000000000e+00 ||delta_v_L||_inf = 5.5020442359500665e-01 ||delta_v_U||_inf = 0.0000000000000000e+00 DenseVector "curr_x" with 4 elements: curr_x[ 1]= 9.9999901000000779e-03 curr_x[ 2]= 2.5476808016708929e-02 curr_x[ 3]= 1.0827684571557799e+00 curr_x[ 4]= 8.7969506223191773e-01 DenseVector "curr_s" with 2 elements: curr_s[ 1]= 8.3460903694136817e+01 curr_s[ 2]= 1.3328003557454222e+01 DenseVector "curr_y_c" with 1 elements: curr_y_c[ 1]=-1.6454877724095773e+01 DenseVector "curr_y_d" with 2 elements: curr_y_d[ 1]=-4.3643221603682469e-01 curr_y_d[ 2]=-6.5542157485186969e-01 DenseVector "curr_slack_x_L" with 4 elements: curr_slack_x_L[ 1]= 1.0000000100000078e-02 curr_slack_x_L[ 2]= 2.5476818016708931e-02 curr_slack_x_L[ 3]= 1.0827684671557798e+00 curr_slack_x_L[ 4]= 8.7969507223191779e-01 DenseVector "curr_slack_x_U" with 0 elements: DenseVector "curr_z_L" with 4 elements: curr_z_L[ 1]= 1.5640854064665453e+00 curr_z_L[ 2]= 1.5416646347888421e+00 curr_z_L[ 3]= 1.0000000000000009e-02 curr_z_L[ 4]= 3.0418593963610774e-01 DenseVector "curr_z_U" with 0 elements: DenseVector "curr_slack_s_L" with 2 elements: curr_slack_s_L[ 1]= 6.2460903904136813e+01 curr_slack_s_L[ 2]= 8.3280036074542210e+00 DenseVector "curr_slack_s_U" with 0 elements: DenseVector "curr_v_L" with 2 elements: curr_v_L[ 1]= 4.6807704800597016e-01 curr_v_L[ 2]= 6.9968328506144539e-01 DenseVector "curr_v_U" with 0 elements: DenseVector "curr_grad_lag_x" with 4 elements: curr_grad_lag_x[ 1]=-2.1321333754836314e-01 curr_grad_lag_x[ 2]=-1.0974464897260927e-01 curr_grad_lag_x[ 3]= 2.3566895846196956e-01 curr_grad_lag_x[ 4]= 2.2985598118471828e-01 DenseVector "curr_grad_lag_s" with 2 elements: curr_grad_lag_s[ 1]=-3.1644831969145470e-02 curr_grad_lag_s[ 2]=-4.4261710209575700e-02 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]=-1.4834722739123622e+00 delta[ 0][ 2]=-1.4602809304393993e+00 delta[ 0][ 3]= 1.2402495971439971e-01 delta[ 0][ 4]=-1.8027175536263820e-01 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-4.0002199770001418e+01 delta[ 1][ 2]=-1.0447235669600660e+01 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]= 1.4740319268725774e+00 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-4.0169818175853855e-02 delta[ 3][ 2]=-1.0202783905199433e-01 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]= 5.8347225807763969e-01 delta[ 4][ 2]= 5.6028091483659015e-01 delta[ 4][ 3]=-1.0240249594741500e+00 delta[ 4][ 4]=-7.1972824744007935e-01 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]=-5.5020442359500665e-01 delta[ 6][ 2]=-3.1063819378218505e-01 Component 8: DenseVector "delta[ 7]" with 0 elements: ***Current NLP Values for Iteration 1: (scaled) (unscaled) Objective...............: 7.8782624220870048e+01 7.8782624220870048e+01 Dual infeasibility......: 2.3566895846196956e-01 2.3566895846196956e-01 Constraint violation....: 9.9794031750440659e-01 9.9794031750440659e-01 Complementarity.........: 2.9236515515232938e+01 2.9236515515232938e+01 Overall NLP error.......: 2.9236515515232938e+01 2.9236515515232938e+01 DenseVector "grad_f" with 4 elements: grad_f[ 1]= 2.4550000000000001e+01 grad_f[ 2]= 2.6750000000000000e+01 grad_f[ 3]= 3.9000000000000000e+01 grad_f[ 4]= 4.0500000000000000e+01 DenseVector "curr_c" with 1 elements: curr_c[ 1]= 9.9794031750440659e-01 DenseVector "curr_d" with 2 elements: curr_d[ 1]= 8.3370365615219740e+01 curr_d[ 2]= 1.3328003557454219e+01 DenseVector "curr_d - curr_s" with 2 elements: curr_d - curr_s[ 1]=-9.0538078917077769e-02 curr_d - curr_s[ 2]=-3.5527136788005009e-15 GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements: jac_c[ 1, 1]= 1.0000000000000000e+00 (0) jac_c[ 1, 2]= 1.0000000000000000e+00 (1) jac_c[ 1, 3]= 1.0000000000000000e+00 (2) jac_c[ 1, 4]= 1.0000000000000000e+00 (3) GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements: jac_d[ 2, 1]= 2.2999999999999998e+00 (0) jac_d[ 2, 2]= 5.5999999999999996e+00 (1) jac_d[ 2, 3]= 1.1100000000000000e+01 (2) jac_d[ 2, 4]= 1.3000000000000000e+00 (3) jac_d[ 1, 1]= 1.1999069712087620e+01 (4) jac_d[ 1, 2]= 1.1898391732106615e+01 (5) jac_d[ 1, 3]= 3.4425217214759435e+01 (6) jac_d[ 1, 4]= 5.1918789390799873e+01 (7) SymTMatrix "W" of dimension 4 with 10 nonzero elements: W[ 1, 1]= 4.0600755335508484e-02 (0) W[ 2, 1]=-8.0171598605041427e-08 (1) W[ 3, 1]=-3.6763037283151076e-04 (2) W[ 4, 1]=-9.0332862351682204e-06 (3) W[ 2, 2]= 2.7550405418060590e-02 (4) W[ 3, 2]=-6.3555391550212481e-04 (5) W[ 4, 2]=-1.5616610761493973e-05 (6) W[ 3, 3]= 5.8198412238091107e-02 (7) W[ 4, 3]=-7.1610651858095689e-02 (8) W[ 4, 4]= 8.8142183071655555e-02 (9) ************************************************** *** Update Barrier Parameter for Iteration 1: ************************************************** Optimality Error for Barrier Sub-problem = 2.913652e+01 Barrier Parameter: 1.000000e-01 ************************************************** *** Solving the Primal Dual System for Iteration 1: ************************************************** Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-8.6491268310817411e+00 RHS[ 0][ 0][ 2]=-2.4932159733760479e+00 RHS[ 0][ 0][ 3]= 1.5331411043595494e-01 RHS[ 0][ 0][ 4]= 4.2036716753249048e-01 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 4.3483221455030319e-01 RHS[ 0][ 1][ 2]= 6.4341489513490957e-01 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 9.9794031750440659e-01 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]=-9.0538078917077769e-02 RHS[ 0][ 3][ 2]=-3.5527136788005009e-15 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 4.0600755335508484e-02 (0) Term: 0[ 2, 1]=-8.0171598605041427e-08 (1) Term: 0[ 3, 1]=-3.6763037283151076e-04 (2) Term: 0[ 4, 1]=-9.0332862351682204e-06 (3) Term: 0[ 2, 2]= 2.7550405418060590e-02 (4) Term: 0[ 3, 2]=-6.3555391550212481e-04 (5) Term: 0[ 4, 2]=-1.5616610761493973e-05 (6) Term: 0[ 3, 3]= 5.8198412238091107e-02 (7) Term: 0[ 4, 3]=-7.1610651858095689e-02 (8) Term: 0[ 4, 4]= 8.8142183071655555e-02 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 1.5640853908256793e+02 Term: 1[ 2]= 6.0512448366893530e+01 Term: 1[ 3]= 9.2355848026014695e-03 Term: 1[ 4]= 3.4578565827854713e-01 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 7.4939204966415675e-03 KKT[1][1][ 2]= 8.4015727903284473e-02 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (0) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (1) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (2) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (3) KKT[3][0][ 1, 1]= 1.1999069712087620e+01 (4) KKT[3][0][ 1, 2]= 1.1898391732106615e+01 (5) KKT[3][0][ 1, 3]= 3.4425217214759435e+01 (6) KKT[3][0][ 1, 4]= 5.1918789390799873e+01 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 4.060075533550848e-02 (1) KKT[2][1] = -8.017159860504143e-08 (2) KKT[3][1] = -3.676303728315108e-04 (3) KKT[4][1] = -9.033286235168220e-06 (4) KKT[2][2] = 2.755040541806059e-02 (5) KKT[3][2] = -6.355539155021248e-04 (6) KKT[4][2] = -1.561661076149397e-05 (7) KKT[3][3] = 5.819841223809111e-02 (8) KKT[4][3] = -7.161065185809569e-02 (9) KKT[4][4] = 8.814218307165556e-02 (10) KKT[1][1] = 1.564085390825679e+02 (11) KKT[2][2] = 6.051244836689353e+01 (12) KKT[3][3] = 9.235584802601469e-03 (13) KKT[4][4] = 3.457856582785471e-01 (14) KKT[5][5] = 7.493920496641568e-03 (15) KKT[6][6] = 8.401572790328447e-02 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[9][1] = 2.300000000000000e+00 (22) KKT[9][2] = 5.600000000000000e+00 (23) KKT[9][3] = 1.110000000000000e+01 (24) KKT[9][4] = 1.300000000000000e+00 (25) KKT[8][1] = 1.199906971208762e+01 (26) KKT[8][2] = 1.189839173210662e+01 (27) KKT[8][3] = 3.442521721475944e+01 (28) KKT[8][4] = 5.191878939079987e+01 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -8.6491268310817411e+00 Trhs[ 0, 1] = -2.4932159733760479e+00 Trhs[ 0, 2] = 1.5331411043595494e-01 Trhs[ 0, 3] = 4.2036716753249048e-01 Trhs[ 0, 4] = 4.3483221455030319e-01 Trhs[ 0, 5] = 6.4341489513490957e-01 Trhs[ 0, 6] = 9.9794031750440659e-01 Trhs[ 0, 7] = -9.0538078917077769e-02 Trhs[ 0, 8] = -3.5527136788005009e-15 HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9 Ma97SolverInterface::Factorization: ma97_factor_solve took 0.000 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -7.3517438910112004e-02 Tsol[ 0, 1] = -8.1448495331724421e-02 Tsol[ 0, 2] = 5.3706591213298172e-01 Tsol[ 0, 3] = 6.1584033961326146e-01 Tsol[ 0, 4] = 4.8701586675493381e+01 Tsol[ 0, 5] = 6.1368223828224266e+00 Tsol[ 0, 6] = 3.9851461831737822e+00 Tsol[ 0, 7] = -6.9866395943857462e-02 Tsol[ 0, 8] = -1.2782529562891476e-01 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-7.3517438910112004e-02 SOL[ 0][ 0][ 2]=-8.1448495331724421e-02 SOL[ 0][ 0][ 3]= 5.3706591213298172e-01 SOL[ 0][ 0][ 4]= 6.1584033961326146e-01 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 4.8701586675493381e+01 SOL[ 0][ 1][ 2]= 6.1368223828224266e+00 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]= 3.9851461831737822e+00 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]=-6.9866395943857462e-02 SOL[ 0][ 3][ 2]=-1.2782529562891476e-01 Number of trial factorizations performed: 1 Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]= 4.1355807667287081e-15 resid[ 0][ 2]= 8.0491169285323849e-16 resid[ 0][ 3]= 4.4131365228849972e-15 resid[ 0][ 4]= 2.9420910152566648e-15 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]=-5.5511151231257827e-17 resid[ 1][ 2]= 1.3877787807814457e-16 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]= 2.2204460492503131e-16 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]=-7.1054273576010019e-15 resid[ 3][ 2]=-8.8817841970012523e-16 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]= 0.0000000000000000e+00 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 0.0000000000000000e+00 resid[ 6][ 2]= 0.0000000000000000e+00 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 4.413137e-15 max-norm resid_s 1.387779e-16 max-norm resid_c 2.220446e-16 max-norm resid_d 7.105427e-15 max-norm resid_zL 0.000000e+00 max-norm resid_zU 0.000000e+00 max-norm resid_vL 0.000000e+00 max-norm resid_vU 0.000000e+00 nrm_rhs = 2.91e+01 nrm_sol = 4.87e+01 nrm_resid = 7.11e-15 residual_ratio = 9.128469e-17 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]= 4.1355807667287081e-15 RHS[ 0][ 0][ 2]= 8.0491169285323849e-16 RHS[ 0][ 0][ 3]= 4.4131365228849972e-15 RHS[ 0][ 0][ 4]= 2.9420910152566648e-15 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]=-5.5511151231257827e-17 RHS[ 0][ 1][ 2]= 1.3877787807814457e-16 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 2.2204460492503131e-16 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]=-7.1054273576010019e-15 RHS[ 0][ 3][ 2]=-8.8817841970012523e-16 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 4.0600755335508484e-02 (0) Term: 0[ 2, 1]=-8.0171598605041427e-08 (1) Term: 0[ 3, 1]=-3.6763037283151076e-04 (2) Term: 0[ 4, 1]=-9.0332862351682204e-06 (3) Term: 0[ 2, 2]= 2.7550405418060590e-02 (4) Term: 0[ 3, 2]=-6.3555391550212481e-04 (5) Term: 0[ 4, 2]=-1.5616610761493973e-05 (6) Term: 0[ 3, 3]= 5.8198412238091107e-02 (7) Term: 0[ 4, 3]=-7.1610651858095689e-02 (8) Term: 0[ 4, 4]= 8.8142183071655555e-02 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 1.5640853908256793e+02 Term: 1[ 2]= 6.0512448366893530e+01 Term: 1[ 3]= 9.2355848026014695e-03 Term: 1[ 4]= 3.4578565827854713e-01 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 7.4939204966415675e-03 KKT[1][1][ 2]= 8.4015727903284473e-02 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (0) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (1) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (2) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (3) KKT[3][0][ 1, 1]= 1.1999069712087620e+01 (4) KKT[3][0][ 1, 2]= 1.1898391732106615e+01 (5) KKT[3][0][ 1, 3]= 3.4425217214759435e+01 (6) KKT[3][0][ 1, 4]= 5.1918789390799873e+01 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 4.060075533550848e-02 (1) KKT[2][1] = -8.017159860504143e-08 (2) KKT[3][1] = -3.676303728315108e-04 (3) KKT[4][1] = -9.033286235168220e-06 (4) KKT[2][2] = 2.755040541806059e-02 (5) KKT[3][2] = -6.355539155021248e-04 (6) KKT[4][2] = -1.561661076149397e-05 (7) KKT[3][3] = 5.819841223809111e-02 (8) KKT[4][3] = -7.161065185809569e-02 (9) KKT[4][4] = 8.814218307165556e-02 (10) KKT[1][1] = 1.564085390825679e+02 (11) KKT[2][2] = 6.051244836689353e+01 (12) KKT[3][3] = 9.235584802601469e-03 (13) KKT[4][4] = 3.457856582785471e-01 (14) KKT[5][5] = 7.493920496641568e-03 (15) KKT[6][6] = 8.401572790328447e-02 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[9][1] = 2.300000000000000e+00 (22) KKT[9][2] = 5.600000000000000e+00 (23) KKT[9][3] = 1.110000000000000e+01 (24) KKT[9][4] = 1.300000000000000e+00 (25) KKT[8][1] = 1.199906971208762e+01 (26) KKT[8][2] = 1.189839173210662e+01 (27) KKT[8][3] = 3.442521721475944e+01 (28) KKT[8][4] = 5.191878939079987e+01 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = 4.1355807667287081e-15 Trhs[ 0, 1] = 8.0491169285323849e-16 Trhs[ 0, 2] = 4.4131365228849972e-15 Trhs[ 0, 3] = 2.9420910152566648e-15 Trhs[ 0, 4] = -5.5511151231257827e-17 Trhs[ 0, 5] = 1.3877787807814457e-16 Trhs[ 0, 6] = 2.2204460492503131e-16 Trhs[ 0, 7] = -7.1054273576010019e-15 Trhs[ 0, 8] = -8.8817841970012523e-16 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = 3.5057641983201705e-17 Tsol[ 0, 1] = 1.7075003727992079e-17 Tsol[ 0, 2] = 4.5422459519645089e-16 Tsol[ 0, 3] = -2.8431263598261352e-16 Tsol[ 0, 4] = 8.6048640160812144e-15 Tsol[ 0, 5] = 5.7367175970414524e-15 Tsol[ 0, 6] = -3.5781771740814518e-15 Tsol[ 0, 7] = 1.1999531805218233e-16 Tsol[ 0, 8] = 3.4319662661287400e-16 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]= 3.5057641983201705e-17 SOL[ 0][ 0][ 2]= 1.7075003727992079e-17 SOL[ 0][ 0][ 3]= 4.5422459519645089e-16 SOL[ 0][ 0][ 4]=-2.8431263598261352e-16 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 8.6048640160812144e-15 SOL[ 0][ 1][ 2]= 5.7367175970414524e-15 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-3.5781771740814518e-15 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 1.1999531805218233e-16 SOL[ 0][ 3][ 2]= 3.4319662661287400e-16 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]= 5.8286708792820718e-16 resid[ 0][ 2]= 3.6082248300317588e-16 resid[ 0][ 3]=-2.7755575615628914e-17 resid[ 0][ 4]=-4.9960036108132044e-16 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 0.0000000000000000e+00 resid[ 1][ 2]= 0.0000000000000000e+00 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]= 0.0000000000000000e+00 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]= 0.0000000000000000e+00 resid[ 3][ 2]= 8.8817841970012523e-16 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]=-1.3877787807814457e-17 resid[ 4][ 2]=-1.3877787807814457e-17 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 8.8817841970012523e-16 resid[ 6][ 2]= 2.2204460492503131e-16 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 5.828671e-16 max-norm resid_s 0.000000e+00 max-norm resid_c 0.000000e+00 max-norm resid_d 8.881784e-16 max-norm resid_zL 1.387779e-17 max-norm resid_zU 0.000000e+00 max-norm resid_vL 8.881784e-16 max-norm resid_vU 0.000000e+00 nrm_rhs = 2.91e+01 nrm_sol = 4.87e+01 nrm_resid = 8.88e-16 residual_ratio = 1.141059e-17 *** Step Calculated for Iteration: 1 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 7.3517438910112046e-02 delta[ 0][ 2]= 8.1448495331724435e-02 delta[ 0][ 3]=-5.3706591213298127e-01 delta[ 0][ 4]=-6.1584033961326179e-01 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-4.8701586675493374e+01 delta[ 1][ 2]=-6.1368223828224213e+00 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]=-3.9851461831737858e+00 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]= 6.9866395943857587e-02 delta[ 3][ 2]= 1.2782529562891509e-01 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]=-3.0628407234891788e+00 delta[ 4][ 2]=-2.5451755439187052e+00 delta[ 4][ 3]= 8.7315965802105266e-02 delta[ 4][ 4]= 2.2438570879883563e-02 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]=-1.0151022791300306e-01 delta[ 6][ 2]=-1.7208600583849079e-01 Component 8: DenseVector "delta[ 7]" with 0 elements: ************************************************** *** Finding Acceptable Trial Point for Iteration 1: ************************************************** --> Starting line search in iteration 1 <-- Acceptable Check: overall_error = 2.9236515515232938e+01 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 2.3566895846196956e-01 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 9.9794031750440659e-01 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 2.9236515515232938e+01 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 7.8782624220870048e+01 last_obj_val = 1.3080000000000001e+02 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 6.6026457348383438e-01 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 1 The current filter has 0 entries. Relative step size for delta_x = 3.276278e-01 minimal step size ALPHA_MIN = 1.274948E-11 Starting checks for alpha (primal) = 1.00e+00 Checking acceptability for trial step size alpha_primal_test= 1.000000e+00: New values of barrier function = 3.7204157752851408e+01 (reference 7.8989662078651492e+01): New values of constraint violation = 7.6333501447223284e-03 (reference 1.0884783964214879e+00): reference_theta = 1.088478e+00 reference_gradBarrTDelta = -4.268716e+01 Checking sufficient reduction... Succeeded... Checking filter acceptability... Succeeded... reference_theta = 1.088478e+00 reference_gradBarrTDelta = -4.268716e+01 Convergence Check: overall_error = 5.7343015345312738e+00 IpData().tol() = 2.4999999999999999e-08 dual_inf = 1.5122408611053844e+00 dual_inf_tol_ = 1.0000000000000000e+00 constr_viol = 0.0000000000000000e+00 constr_viol_tol_ = 1.0000000000000000e-04 compl_inf = 5.7343015345312738e+00 compl_inf_tol_ = 1.0000000000000000e-04 obj val update iter = 2 Acceptable Check: overall_error = 5.7343015345312738e+00 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 1.5122408611053844e+00 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 0.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 5.7343015345312738e+00 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 3.6879120268713557e+01 last_obj_val = 7.8782624220870048e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 1.1362392499287837e+00 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 2 ************************************************** *** Update HessianMatrix for Iteration 2: ************************************************** ************************************************** *** Summary of Iteration: 2: ************************************************** iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 2 3.6879120e+01 0.00e+00 1.51e+00 -1.0 4.87e+01 - 5.06e-01 1.00e+00f 1 Nhj ************************************************** *** Beginning Iteration 2 from the following point: ************************************************** Current barrier parameter mu = 1.0000000000000001e-01 Current fraction-to-the-boundary parameter tau = 9.8999999999999999e-01 ||curr_x||_inf = 5.4570254502279858e-01 ||curr_s||_inf = 3.4759317018643443e+01 ||curr_y_c||_inf = 2.0440023907269559e+01 ||curr_y_d||_inf = 5.2759627922295460e-01 ||curr_z_L||_inf = 3.1552994540701768e-01 ||curr_z_U||_inf = 0.0000000000000000e+00 ||curr_v_L||_inf = 6.1268377632380122e-01 ||curr_v_U||_inf = 0.0000000000000000e+00 ||delta_x||_inf = 6.1584033961326179e-01 ||delta_s||_inf = 4.8701586675493374e+01 ||delta_y_c||_inf = 3.9851461831737858e+00 ||delta_y_d||_inf = 1.2782529562891509e-01 ||delta_z_L||_inf = 3.0628407234891788e+00 ||delta_z_U||_inf = 0.0000000000000000e+00 ||delta_v_L||_inf = 1.7208600583849079e-01 ||delta_v_U||_inf = 0.0000000000000000e+00 DenseVector "curr_x" with 4 elements: curr_x[ 1]= 8.3517429010112124e-02 curr_x[ 2]= 1.0692530334843336e-01 curr_x[ 3]= 5.4570254502279858e-01 curr_x[ 4]= 2.6385472261865595e-01 DenseVector "curr_s" with 2 elements: curr_s[ 1]= 3.4759317018643443e+01 curr_s[ 2]= 7.1911811746318008e+00 DenseVector "curr_y_c" with 1 elements: curr_y_c[ 1]=-2.0440023907269559e+01 DenseVector "curr_y_d" with 2 elements: curr_y_d[ 1]=-3.6656582009296712e-01 curr_y_d[ 2]=-5.2759627922295460e-01 DenseVector "curr_slack_x_L" with 4 elements: curr_slack_x_L[ 1]= 8.3517439010112118e-02 curr_slack_x_L[ 2]= 1.0692531334843336e-01 curr_slack_x_L[ 3]= 5.4570255502279863e-01 curr_slack_x_L[ 4]= 2.6385473261865594e-01 DenseVector "curr_slack_x_U" with 0 elements: DenseVector "curr_z_L" with 4 elements: curr_z_L[ 1]= 1.5640854064665310e-02 curr_z_L[ 2]= 2.5493001105765312e-01 curr_z_L[ 3]= 5.4143311321117236e-02 curr_z_L[ 4]= 3.1552994540701768e-01 DenseVector "curr_z_U" with 0 elements: DenseVector "curr_slack_s_L" with 2 elements: curr_slack_s_L[ 1]= 1.3759317228643443e+01 curr_slack_s_L[ 2]= 2.1911812246318005e+00 DenseVector "curr_slack_s_U" with 0 elements: DenseVector "curr_v_L" with 2 elements: curr_v_L[ 1]= 4.1675770964811376e-01 curr_v_L[ 2]= 6.1268377632380122e-01 DenseVector "curr_v_U" with 0 elements: DenseVector "curr_grad_lag_x" with 4 elements: curr_grad_lag_x[ 1]=-1.5122408611053844e+00 curr_grad_lag_x[ 2]=-1.2566872909386084e+00 curr_grad_lag_x[ 3]= 4.6751419585912148e-02 curr_grad_lag_x[ 4]= 2.6270196542249602e-04 DenseVector "curr_grad_lag_s" with 2 elements: curr_grad_lag_s[ 1]=-5.0191889555146640e-02 curr_grad_lag_s[ 2]=-8.5087497100846621e-02 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 7.3517438910112046e-02 delta[ 0][ 2]= 8.1448495331724435e-02 delta[ 0][ 3]=-5.3706591213298127e-01 delta[ 0][ 4]=-6.1584033961326179e-01 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-4.8701586675493374e+01 delta[ 1][ 2]=-6.1368223828224213e+00 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]=-3.9851461831737858e+00 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]= 6.9866395943857587e-02 delta[ 3][ 2]= 1.2782529562891509e-01 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]=-3.0628407234891788e+00 delta[ 4][ 2]=-2.5451755439187052e+00 delta[ 4][ 3]= 8.7315965802105266e-02 delta[ 4][ 4]= 2.2438570879883563e-02 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]=-1.0151022791300306e-01 delta[ 6][ 2]=-1.7208600583849079e-01 Component 8: DenseVector "delta[ 7]" with 0 elements: ***Current NLP Values for Iteration 2: (scaled) (unscaled) Objective...............: 3.6879120268713557e+01 3.6879120268713557e+01 Dual infeasibility......: 1.5122408611053844e+00 1.5122408611053844e+00 Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00 Complementarity.........: 5.7343015345312738e+00 5.7343015345312738e+00 Overall NLP error.......: 5.7343015345312738e+00 5.7343015345312738e+00 DenseVector "grad_f" with 4 elements: grad_f[ 1]= 2.4550000000000001e+01 grad_f[ 2]= 2.6750000000000000e+01 grad_f[ 3]= 3.9000000000000000e+01 grad_f[ 4]= 4.0500000000000000e+01 DenseVector "curr_c" with 1 elements: curr_c[ 1]= 0.0000000000000000e+00 DenseVector "curr_d" with 2 elements: curr_d[ 1]= 3.4751683668498721e+01 curr_d[ 2]= 7.1911811746318008e+00 DenseVector "curr_d - curr_s" with 2 elements: curr_d - curr_s[ 1]=-7.6333501447223284e-03 curr_d - curr_s[ 2]= 0.0000000000000000e+00 GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements: jac_c[ 1, 1]= 1.0000000000000000e+00 (0) jac_c[ 1, 2]= 1.0000000000000000e+00 (1) jac_c[ 1, 3]= 1.0000000000000000e+00 (2) jac_c[ 1, 4]= 1.0000000000000000e+00 (3) GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements: jac_d[ 2, 1]= 2.2999999999999998e+00 (0) jac_d[ 2, 2]= 5.5999999999999996e+00 (1) jac_d[ 2, 3]= 1.1100000000000000e+01 (2) jac_d[ 2, 4]= 1.3000000000000000e+00 (3) jac_d[ 1, 1]= 1.1984490688314045e+01 (4) jac_d[ 1, 2]= 1.1886526157451877e+01 (5) jac_d[ 1, 3]= 3.4380626811447790e+01 (6) jac_d[ 1, 4]= 5.1991503947462043e+01 (7) SymTMatrix "W" of dimension 4 with 10 nonzero elements: W[ 1, 1]= 6.8050211560192517e-02 (0) W[ 2, 1]=-1.8774203919451370e-05 (1) W[ 3, 1]=-1.0338017881601843e-02 (2) W[ 4, 1]=-1.5117640031252680e-04 (3) W[ 2, 2]= 4.6175283220970753e-02 (4) W[ 3, 2]=-8.9812383693679432e-03 (5) W[ 4, 2]=-1.3133574565063667e-04 (6) W[ 3, 3]= 3.8309720419374964e-02 (7) W[ 4, 3]=-7.2320045784901130e-02 (8) W[ 4, 4]= 1.4967290192030422e-01 (9) ************************************************** *** Update Barrier Parameter for Iteration 2: ************************************************** Optimality Error for Barrier Sub-problem = 5.634302e+00 Barrier Parameter: 1.000000e-01 ************************************************** *** Solving the Primal Dual System for Iteration 2: ************************************************** Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-2.6939537294226183e+00 RHS[ 0][ 0][ 2]=-1.9369885169297625e+00 RHS[ 0][ 0][ 3]=-8.2354281539443686e-02 RHS[ 0][ 0][ 4]=-6.3202776180545886e-02 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 3.5929901760405991e-01 RHS[ 0][ 1][ 2]= 4.8195979434682179e-01 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 0.0000000000000000e+00 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]=-7.6333501447223284e-03 RHS[ 0][ 3][ 2]= 0.0000000000000000e+00 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 6.8050211560192517e-02 (0) Term: 0[ 2, 1]=-1.8774203919451370e-05 (1) Term: 0[ 3, 1]=-1.0338017881601843e-02 (2) Term: 0[ 4, 1]=-1.5117640031252680e-04 (3) Term: 0[ 2, 2]= 4.6175283220970753e-02 (4) Term: 0[ 3, 2]=-8.9812383693679432e-03 (5) Term: 0[ 4, 2]=-1.3133574565063667e-04 (6) Term: 0[ 3, 3]= 3.8309720419374964e-02 (7) Term: 0[ 4, 3]=-7.2320045784901130e-02 (8) Term: 0[ 4, 4]= 1.4967290192030422e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 1.8727650476413132e-01 Term: 1[ 2]= 2.3841876453232604e+00 Term: 1[ 3]= 9.9217624734879994e-02 Term: 1[ 4]= 1.1958472083312863e+00 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 3.0289127194518699e-02 KKT[1][1][ 2]= 2.7961346575829427e-01 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (0) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (1) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (2) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (3) KKT[3][0][ 1, 1]= 1.1984490688314045e+01 (4) KKT[3][0][ 1, 2]= 1.1886526157451877e+01 (5) KKT[3][0][ 1, 3]= 3.4380626811447790e+01 (6) KKT[3][0][ 1, 4]= 5.1991503947462043e+01 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 6.805021156019252e-02 (1) KKT[2][1] = -1.877420391945137e-05 (2) KKT[3][1] = -1.033801788160184e-02 (3) KKT[4][1] = -1.511764003125268e-04 (4) KKT[2][2] = 4.617528322097075e-02 (5) KKT[3][2] = -8.981238369367943e-03 (6) KKT[4][2] = -1.313357456506367e-04 (7) KKT[3][3] = 3.830972041937496e-02 (8) KKT[4][3] = -7.232004578490113e-02 (9) KKT[4][4] = 1.496729019203042e-01 (10) KKT[1][1] = 1.872765047641313e-01 (11) KKT[2][2] = 2.384187645323260e+00 (12) KKT[3][3] = 9.921762473487999e-02 (13) KKT[4][4] = 1.195847208331286e+00 (14) KKT[5][5] = 3.028912719451870e-02 (15) KKT[6][6] = 2.796134657582943e-01 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[9][1] = 2.300000000000000e+00 (22) KKT[9][2] = 5.600000000000000e+00 (23) KKT[9][3] = 1.110000000000000e+01 (24) KKT[9][4] = 1.300000000000000e+00 (25) KKT[8][1] = 1.198449068831404e+01 (26) KKT[8][2] = 1.188652615745188e+01 (27) KKT[8][3] = 3.438062681144779e+01 (28) KKT[8][4] = 5.199150394746204e+01 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -2.6939537294226183e+00 Trhs[ 0, 1] = -1.9369885169297625e+00 Trhs[ 0, 2] = -8.2354281539443686e-02 Trhs[ 0, 3] = -6.3202776180545886e-02 Trhs[ 0, 4] = 3.5929901760405991e-01 Trhs[ 0, 5] = 4.8195979434682179e-01 Trhs[ 0, 6] = 0.0000000000000000e+00 Trhs[ 0, 7] = -7.6333501447223284e-03 Trhs[ 0, 8] = 0.0000000000000000e+00 HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9 Ma97SolverInterface::Factorization: ma97_factor_solve took 0.000 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -5.3410710546106188e-01 Tsol[ 0, 1] = 8.2964316391840348e-02 Tsol[ 0, 2] = 2.4091324935222591e-01 Tsol[ 0, 3] = 2.1022953971699546e-01 Tsol[ 0, 4] = 1.3805687699092424e+01 Tsol[ 0, 5] = 2.1835892986756651e+00 Tsol[ 0, 6] = -3.5562863484172733e+00 Tsol[ 0, 7] = 5.8863213121552682e-02 Tsol[ 0, 8] = 1.2860117724860404e-01 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-5.3410710546106188e-01 SOL[ 0][ 0][ 2]= 8.2964316391840348e-02 SOL[ 0][ 0][ 3]= 2.4091324935222591e-01 SOL[ 0][ 0][ 4]= 2.1022953971699546e-01 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 1.3805687699092424e+01 SOL[ 0][ 1][ 2]= 2.1835892986756651e+00 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-3.5562863484172733e+00 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 5.8863213121552682e-02 SOL[ 0][ 3][ 2]= 1.2860117724860404e-01 Number of trial factorizations performed: 1 Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]=-6.6613381477509392e-16 resid[ 0][ 2]= 6.6613381477509392e-16 resid[ 0][ 3]=-6.9388939039072284e-18 resid[ 0][ 4]= 2.9708223728275307e-15 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 4.8572257327350599e-17 resid[ 1][ 2]=-2.0816681711721685e-17 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]=-1.9428902930940239e-16 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]= 1.7763568394002505e-15 resid[ 3][ 2]= 4.4408920985006262e-16 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]= 0.0000000000000000e+00 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 0.0000000000000000e+00 resid[ 6][ 2]= 0.0000000000000000e+00 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 2.970822e-15 max-norm resid_s 4.857226e-17 max-norm resid_c 1.942890e-16 max-norm resid_d 1.776357e-15 max-norm resid_zL 0.000000e+00 max-norm resid_zU 0.000000e+00 max-norm resid_vL 0.000000e+00 max-norm resid_vU 0.000000e+00 nrm_rhs = 5.63e+00 nrm_sol = 1.38e+01 nrm_resid = 2.97e-15 residual_ratio = 1.528202e-16 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-6.6613381477509392e-16 RHS[ 0][ 0][ 2]= 6.6613381477509392e-16 RHS[ 0][ 0][ 3]=-6.9388939039072284e-18 RHS[ 0][ 0][ 4]= 2.9708223728275307e-15 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 4.8572257327350599e-17 RHS[ 0][ 1][ 2]=-2.0816681711721685e-17 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]=-1.9428902930940239e-16 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]= 1.7763568394002505e-15 RHS[ 0][ 3][ 2]= 4.4408920985006262e-16 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 6.8050211560192517e-02 (0) Term: 0[ 2, 1]=-1.8774203919451370e-05 (1) Term: 0[ 3, 1]=-1.0338017881601843e-02 (2) Term: 0[ 4, 1]=-1.5117640031252680e-04 (3) Term: 0[ 2, 2]= 4.6175283220970753e-02 (4) Term: 0[ 3, 2]=-8.9812383693679432e-03 (5) Term: 0[ 4, 2]=-1.3133574565063667e-04 (6) Term: 0[ 3, 3]= 3.8309720419374964e-02 (7) Term: 0[ 4, 3]=-7.2320045784901130e-02 (8) Term: 0[ 4, 4]= 1.4967290192030422e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 1.8727650476413132e-01 Term: 1[ 2]= 2.3841876453232604e+00 Term: 1[ 3]= 9.9217624734879994e-02 Term: 1[ 4]= 1.1958472083312863e+00 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 3.0289127194518699e-02 KKT[1][1][ 2]= 2.7961346575829427e-01 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (0) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (1) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (2) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (3) KKT[3][0][ 1, 1]= 1.1984490688314045e+01 (4) KKT[3][0][ 1, 2]= 1.1886526157451877e+01 (5) KKT[3][0][ 1, 3]= 3.4380626811447790e+01 (6) KKT[3][0][ 1, 4]= 5.1991503947462043e+01 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 6.805021156019252e-02 (1) KKT[2][1] = -1.877420391945137e-05 (2) KKT[3][1] = -1.033801788160184e-02 (3) KKT[4][1] = -1.511764003125268e-04 (4) KKT[2][2] = 4.617528322097075e-02 (5) KKT[3][2] = -8.981238369367943e-03 (6) KKT[4][2] = -1.313357456506367e-04 (7) KKT[3][3] = 3.830972041937496e-02 (8) KKT[4][3] = -7.232004578490113e-02 (9) KKT[4][4] = 1.496729019203042e-01 (10) KKT[1][1] = 1.872765047641313e-01 (11) KKT[2][2] = 2.384187645323260e+00 (12) KKT[3][3] = 9.921762473487999e-02 (13) KKT[4][4] = 1.195847208331286e+00 (14) KKT[5][5] = 3.028912719451870e-02 (15) KKT[6][6] = 2.796134657582943e-01 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[9][1] = 2.300000000000000e+00 (22) KKT[9][2] = 5.600000000000000e+00 (23) KKT[9][3] = 1.110000000000000e+01 (24) KKT[9][4] = 1.300000000000000e+00 (25) KKT[8][1] = 1.198449068831404e+01 (26) KKT[8][2] = 1.188652615745188e+01 (27) KKT[8][3] = 3.438062681144779e+01 (28) KKT[8][4] = 5.199150394746204e+01 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -6.6613381477509392e-16 Trhs[ 0, 1] = 6.6613381477509392e-16 Trhs[ 0, 2] = -6.9388939039072284e-18 Trhs[ 0, 3] = 2.9708223728275307e-15 Trhs[ 0, 4] = 4.8572257327350599e-17 Trhs[ 0, 5] = -2.0816681711721685e-17 Trhs[ 0, 6] = -1.9428902930940239e-16 Trhs[ 0, 7] = 1.7763568394002505e-15 Trhs[ 0, 8] = 4.4408920985006262e-16 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -9.5356872250876963e-16 Tsol[ 0, 1] = 6.2736794896654720e-16 Tsol[ 0, 2] = -1.6189351894858036e-16 Tsol[ 0, 3] = 2.9380526318140089e-16 Tsol[ 0, 4] = 3.9622100630814147e-15 Tsol[ 0, 5] = -5.3910797560098931e-16 Tsol[ 0, 6] = -9.8161936903907244e-16 Tsol[ 0, 7] = 7.1439627244724329e-17 Tsol[ 0, 8] = -1.2992516776400887e-16 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-9.5356872250876963e-16 SOL[ 0][ 0][ 2]= 6.2736794896654720e-16 SOL[ 0][ 0][ 3]=-1.6189351894858036e-16 SOL[ 0][ 0][ 4]= 2.9380526318140089e-16 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 3.9622100630814147e-15 SOL[ 0][ 1][ 2]=-5.3910797560098931e-16 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-9.8161936903907244e-16 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 7.1439627244724329e-17 SOL[ 0][ 3][ 2]=-1.2992516776400887e-16 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]= 0.0000000000000000e+00 resid[ 0][ 2]=-4.4408920985006262e-16 resid[ 0][ 3]= 2.0816681711721685e-17 resid[ 0][ 4]= 4.1730941618967066e-16 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]=-1.7347234759768071e-18 resid[ 1][ 2]=-6.9388939039072284e-18 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]= 5.5511151231257827e-17 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]=-1.7763568394002505e-15 resid[ 3][ 2]= 0.0000000000000000e+00 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]= 0.0000000000000000e+00 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]=-1.2490009027033011e-16 resid[ 6][ 2]= 1.1102230246251565e-16 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 4.440892e-16 max-norm resid_s 6.938894e-18 max-norm resid_c 5.551115e-17 max-norm resid_d 1.776357e-15 max-norm resid_zL 0.000000e+00 max-norm resid_zU 0.000000e+00 max-norm resid_vL 1.249001e-16 max-norm resid_vU 0.000000e+00 nrm_rhs = 5.63e+00 nrm_sol = 1.38e+01 nrm_resid = 1.78e-15 residual_ratio = 9.137643e-17 *** Step Calculated for Iteration: 2 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 5.3410710546106088e-01 delta[ 0][ 2]=-8.2964316391839724e-02 delta[ 0][ 3]=-2.4091324935222608e-01 delta[ 0][ 4]=-2.1022953971699515e-01 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-1.3805687699092420e+01 delta[ 1][ 2]=-2.1835892986756655e+00 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]= 3.5562863484172724e+00 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-5.8863213121552613e-02 delta[ 3][ 2]=-1.2860117724860418e-01 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]= 1.0816881564367993e+00 delta[ 4][ 2]= 8.7810472413526830e-01 delta[ 4][ 3]= 1.5300954149324555e-01 delta[ 4][ 4]= 3.1486888632530829e-01 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]= 8.6723235664059716e-03 delta[ 6][ 2]= 4.3514680147757549e-02 Component 8: DenseVector "delta[ 7]" with 0 elements: ************************************************** *** Finding Acceptable Trial Point for Iteration 2: ************************************************** --> Starting line search in iteration 2 <-- Acceptable Check: overall_error = 5.7343015345312738e+00 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 1.5122408611053844e+00 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 0.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 5.7343015345312738e+00 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 3.6879120268713557e+01 last_obj_val = 7.8782624220870048e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 1.1362392499287837e+00 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 2 The current filter has 0 entries. Relative step size for delta_x = 4.929382e-01 minimal step size ALPHA_MIN = 5.260747E-13 Starting checks for alpha (primal) = 9.87e-01 Checking acceptability for trial step size alpha_primal_test= 9.866748e-01: New values of barrier function = 3.1307833714662323e+01 (reference 3.7204157752851408e+01): New values of constraint violation = 5.4958283264768149e-02 (reference 7.6333501447223284e-03): reference_theta = 7.633350e-03 reference_gradBarrTDelta = -7.255006e+00 Checking sufficient reduction... Succeeded... Checking filter acceptability... Succeeded... reference_theta = 7.633350e-03 reference_gradBarrTDelta = -7.255006e+00 Convergence Check: overall_error = 6.6992754355230522e-01 IpData().tol() = 2.4999999999999999e-08 dual_inf = 7.3586884616349546e-02 dual_inf_tol_ = 1.0000000000000000e+00 constr_viol = 0.0000000000000000e+00 constr_viol_tol_ = 1.0000000000000000e-04 compl_inf = 6.6992754355230522e-01 compl_inf_tol_ = 1.0000000000000000e-04 obj val update iter = 3 Acceptable Check: overall_error = 6.6992754355230522e-01 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 7.3586884616349546e-02 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 0.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 6.6992754355230522e-01 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 2.9955742525783506e+01 last_obj_val = 3.6879120268713557e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 2.3112021800063745e-01 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 3 ************************************************** *** Update HessianMatrix for Iteration 3: ************************************************** ************************************************** *** Summary of Iteration: 3: ************************************************** iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 3 2.9955743e+01 0.00e+00 7.36e-02 -1.0 1.38e+01 - 1.00e+00 9.87e-01f 1 ************************************************** *** Beginning Iteration 3 from the following point: ************************************************** Current barrier parameter mu = 1.0000000000000001e-01 Current fraction-to-the-boundary parameter tau = 9.8999999999999999e-01 ||curr_x||_inf = 6.1050744687125991e-01 ||curr_s||_inf = 2.1137592962286437e+01 ||curr_y_c||_inf = 1.6931125809660543e+01 ||curr_y_d||_inf = 6.5448381919811305e-01 ||curr_z_L||_inf = 1.1330347351929215e+00 ||curr_z_U||_inf = 0.0000000000000000e+00 ||curr_v_L||_inf = 6.5619845647155872e-01 ||curr_v_U||_inf = 0.0000000000000000e+00 ||delta_x||_inf = 5.3410710546106088e-01 ||delta_s||_inf = 1.3805687699092420e+01 ||delta_y_c||_inf = 3.5562863484172724e+00 ||delta_y_d||_inf = 1.2860117724860418e-01 ||delta_z_L||_inf = 1.0816881564367993e+00 ||delta_z_U||_inf = 0.0000000000000000e+00 ||delta_v_L||_inf = 4.3514680147757549e-02 ||delta_v_U||_inf = 0.0000000000000000e+00 DenseVector "curr_x" with 4 elements: curr_x[ 1]= 6.1050744687125991e-01 curr_x[ 2]= 2.5066503624300060e-02 curr_x[ 3]= 3.0799951452384799e-01 curr_x[ 4]= 5.6426534980591997e-02 DenseVector "curr_s" with 2 elements: curr_s[ 1]= 2.1137592962286437e+01 curr_s[ 2]= 5.0366886547894598e+00 DenseVector "curr_y_c" with 1 elements: curr_y_c[ 1]=-1.6931125809660543e+01 DenseVector "curr_y_d" with 2 elements: curr_y_d[ 1]=-4.2464466873047713e-01 curr_y_d[ 2]=-6.5448381919811305e-01 DenseVector "curr_slack_x_L" with 4 elements: curr_slack_x_L[ 1]= 6.1050745687125996e-01 curr_slack_x_L[ 2]= 2.5066513624300062e-02 curr_slack_x_L[ 3]= 3.0799952452384799e-01 curr_slack_x_L[ 4]= 5.6426544980591999e-02 DenseVector "curr_slack_x_U" with 0 elements: DenseVector "curr_z_L" with 4 elements: curr_z_L[ 1]= 1.0973290105014646e+00 curr_z_L[ 2]= 1.1330347351929215e+00 curr_z_L[ 3]= 2.0715285281436280e-01 curr_z_L[ 4]= 6.3039883173232591e-01 DenseVector "curr_z_U" with 0 elements: DenseVector "curr_slack_s_L" with 2 elements: curr_slack_s_L[ 1]= 1.3759317228643653e-01 curr_slack_s_L[ 2]= 3.6688704789459514e-02 DenseVector "curr_slack_s_U" with 0 elements: DenseVector "curr_v_L" with 2 elements: curr_v_L[ 1]= 4.2543003321451972e-01 curr_v_L[ 2]= 6.5619845647155872e-01 DenseVector "curr_v_U" with 0 elements: DenseVector "curr_grad_lag_x" with 4 elements: curr_grad_lag_x[ 1]= 3.8723083528255930e-03 curr_grad_lag_x[ 2]=-3.0218544358912691e-02 curr_grad_lag_x[ 3]=-7.3586884616349546e-02 curr_grad_lag_x[ 4]=-1.9277398771568199e-02 DenseVector "curr_grad_lag_s" with 2 elements: curr_grad_lag_s[ 1]=-7.8536448404259440e-04 curr_grad_lag_s[ 2]=-1.7146372734456738e-03 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 5.3410710546106088e-01 delta[ 0][ 2]=-8.2964316391839724e-02 delta[ 0][ 3]=-2.4091324935222608e-01 delta[ 0][ 4]=-2.1022953971699515e-01 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-1.3805687699092420e+01 delta[ 1][ 2]=-2.1835892986756655e+00 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]= 3.5562863484172724e+00 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-5.8863213121552613e-02 delta[ 3][ 2]=-1.2860117724860418e-01 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]= 1.0816881564367993e+00 delta[ 4][ 2]= 8.7810472413526830e-01 delta[ 4][ 3]= 1.5300954149324555e-01 delta[ 4][ 4]= 3.1486888632530829e-01 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]= 8.6723235664059716e-03 delta[ 6][ 2]= 4.3514680147757549e-02 Component 8: DenseVector "delta[ 7]" with 0 elements: ***Current NLP Values for Iteration 3: (scaled) (unscaled) Objective...............: 2.9955742525783506e+01 2.9955742525783506e+01 Dual infeasibility......: 7.3586884616349546e-02 7.3586884616349546e-02 Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00 Complementarity.........: 6.6992754355230522e-01 6.6992754355230522e-01 Overall NLP error.......: 6.6992754355230522e-01 6.6992754355230522e-01 DenseVector "grad_f" with 4 elements: grad_f[ 1]= 2.4550000000000001e+01 grad_f[ 2]= 2.6750000000000000e+01 grad_f[ 3]= 3.9000000000000000e+01 grad_f[ 4]= 4.0500000000000000e+01 DenseVector "curr_c" with 1 elements: curr_c[ 1]= 0.0000000000000000e+00 DenseVector "curr_d" with 2 elements: curr_d[ 1]= 2.1082634679021670e+01 curr_d[ 2]= 5.0366886547894607e+00 DenseVector "curr_d - curr_s" with 2 elements: curr_d - curr_s[ 1]=-5.4958283264767260e-02 curr_d - curr_s[ 2]= 8.8817841970012523e-16 GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements: jac_c[ 1, 1]= 1.0000000000000000e+00 (0) jac_c[ 1, 2]= 1.0000000000000000e+00 (1) jac_c[ 1, 3]= 1.0000000000000000e+00 (2) jac_c[ 1, 4]= 1.0000000000000000e+00 (3) GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements: jac_d[ 2, 1]= 2.2999999999999998e+00 (0) jac_d[ 2, 2]= 5.5999999999999996e+00 (1) jac_d[ 2, 3]= 1.1100000000000000e+01 (2) jac_d[ 2, 4]= 1.3000000000000000e+00 (3) jac_d[ 1, 1]= 1.1803657166624788e+01 (4) jac_d[ 1, 2]= 1.1894529671351799e+01 (5) jac_d[ 1, 3]= 3.4547797039114144e+01 (6) jac_d[ 1, 4]= 5.2059817113711276e+01 (7) SymTMatrix "W" of dimension 4 with 10 nonzero elements: W[ 1, 1]= 1.2961977264479624e-01 (0) W[ 2, 1]=-1.9359244327110846e-04 (1) W[ 3, 1]=-2.5665216490371118e-01 (2) W[ 4, 1]=-1.4220540729077426e-03 (3) W[ 2, 2]= 9.2665923029522784e-02 (4) W[ 3, 2]=-7.1506133743770269e-03 (5) W[ 4, 2]=-3.9620000387046776e-05 (6) W[ 3, 3]= 5.1893307868279581e-01 (7) W[ 4, 3]=-5.2525598112222266e-02 (8) W[ 4, 4]= 3.0211010583495224e-01 (9) ************************************************** *** Update Barrier Parameter for Iteration 3: ************************************************** Optimality Error for Barrier Sub-problem = 5.699275e-01 sub_problem_error < kappa_eps * mu (1.000000e+00) Updating mu= 1.0000000000000001e-01 and tau= 9.8999999999999999e-01 to new_mu= 2.0000000000000004e-02 and new_tau= 9.8999999999999999e-01 Barrier Parameter: 2.000000e-02 ************************************************** *** Solving the Primal Dual System for Iteration 3: ************************************************** Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]= 1.0684418862324438e+00 RHS[ 0][ 0][ 2]= 3.0493917903812756e-01 RHS[ 0][ 0][ 3]= 6.8631003019044179e-02 RHS[ 0][ 0][ 4]= 2.5667852454646373e-01 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 2.7928881895233321e-01 RHS[ 0][ 1][ 2]= 1.0935711666036239e-01 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 0.0000000000000000e+00 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]=-5.4958283264767260e-02 RHS[ 0][ 3][ 2]= 8.8817841970012523e-16 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 1.2961977264479624e-01 (0) Term: 0[ 2, 1]=-1.9359244327110846e-04 (1) Term: 0[ 3, 1]=-2.5665216490371118e-01 (2) Term: 0[ 4, 1]=-1.4220540729077426e-03 (3) Term: 0[ 2, 2]= 9.2665923029522784e-02 (4) Term: 0[ 3, 2]=-7.1506133743770269e-03 (5) Term: 0[ 4, 2]=-3.9620000387046776e-05 (6) Term: 0[ 3, 3]= 5.1893307868279581e-01 (7) Term: 0[ 4, 3]=-5.2525598112222266e-02 (8) Term: 0[ 4, 4]= 3.0211010583495224e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 1.7974047624660914e+00 Term: 1[ 2]= 4.5201129769180639e+01 Term: 1[ 3]= 6.7257523573976563e-01 Term: 1[ 4]= 1.1172026072997250e+01 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 3.0919414542523573e+00 KKT[1][1][ 2]= 1.7885571601319690e+01 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (0) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (1) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (2) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (3) KKT[3][0][ 1, 1]= 1.1803657166624788e+01 (4) KKT[3][0][ 1, 2]= 1.1894529671351799e+01 (5) KKT[3][0][ 1, 3]= 3.4547797039114144e+01 (6) KKT[3][0][ 1, 4]= 5.2059817113711276e+01 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 1.296197726447962e-01 (1) KKT[2][1] = -1.935924432711085e-04 (2) KKT[3][1] = -2.566521649037112e-01 (3) KKT[4][1] = -1.422054072907743e-03 (4) KKT[2][2] = 9.266592302952278e-02 (5) KKT[3][2] = -7.150613374377027e-03 (6) KKT[4][2] = -3.962000038704678e-05 (7) KKT[3][3] = 5.189330786827958e-01 (8) KKT[4][3] = -5.252559811222227e-02 (9) KKT[4][4] = 3.021101058349522e-01 (10) KKT[1][1] = 1.797404762466091e+00 (11) KKT[2][2] = 4.520112976918064e+01 (12) KKT[3][3] = 6.725752357397656e-01 (13) KKT[4][4] = 1.117202607299725e+01 (14) KKT[5][5] = 3.091941454252357e+00 (15) KKT[6][6] = 1.788557160131969e+01 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[9][1] = 2.300000000000000e+00 (22) KKT[9][2] = 5.600000000000000e+00 (23) KKT[9][3] = 1.110000000000000e+01 (24) KKT[9][4] = 1.300000000000000e+00 (25) KKT[8][1] = 1.180365716662479e+01 (26) KKT[8][2] = 1.189452967135180e+01 (27) KKT[8][3] = 3.454779703911414e+01 (28) KKT[8][4] = 5.205981711371128e+01 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = 1.0684418862324438e+00 Trhs[ 0, 1] = 3.0493917903812756e-01 Trhs[ 0, 2] = 6.8631003019044179e-02 Trhs[ 0, 3] = 2.5667852454646373e-01 Trhs[ 0, 4] = 2.7928881895233321e-01 Trhs[ 0, 5] = 1.0935711666036239e-01 Trhs[ 0, 6] = 0.0000000000000000e+00 Trhs[ 0, 7] = -5.4958283264767260e-02 Trhs[ 0, 8] = 8.8817841970012523e-16 HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9 Ma97SolverInterface::Factorization: ma97_factor_solve took 0.000 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = 9.3943926802057612e-03 Tsol[ 0, 1] = -1.2165304472800767e-02 Tsol[ 0, 2] = 4.6683086101839966e-03 Tsol[ 0, 3] = -1.8973968175889666e-03 Tsol[ 0, 4] = 8.3647545802574316e-02 Tsol[ 0, 5] = 2.8330078269647920e-03 Tsol[ 0, 6] = 1.4303226837705822e+00 Tsol[ 0, 7] = -2.0655504538880903e-02 Tsol[ 0, 8] = -5.8687152324084516e-02 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]= 9.3943926802057612e-03 SOL[ 0][ 0][ 2]=-1.2165304472800767e-02 SOL[ 0][ 0][ 3]= 4.6683086101839966e-03 SOL[ 0][ 0][ 4]=-1.8973968175889666e-03 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 8.3647545802574316e-02 SOL[ 0][ 1][ 2]= 2.8330078269647920e-03 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]= 1.4303226837705822e+00 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]=-2.0655504538880903e-02 SOL[ 0][ 3][ 2]=-5.8687152324084516e-02 Number of trial factorizations performed: 1 Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]= 1.1666015375944028e-16 resid[ 0][ 2]=-6.5919492087118670e-16 resid[ 0][ 3]= 2.5257573810222311e-15 resid[ 0][ 4]= 9.3328123007552222e-15 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 3.8163916471489756e-17 resid[ 1][ 2]= 1.3877787807814457e-17 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]= 2.3852447794681098e-17 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]=-1.3877787807814457e-17 resid[ 3][ 2]=-2.3418766925686896e-17 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]= 0.0000000000000000e+00 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 0.0000000000000000e+00 resid[ 6][ 2]= 0.0000000000000000e+00 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 9.332812e-15 max-norm resid_s 3.816392e-17 max-norm resid_c 2.385245e-17 max-norm resid_d 2.341877e-17 max-norm resid_zL 0.000000e+00 max-norm resid_zU 0.000000e+00 max-norm resid_vL 0.000000e+00 max-norm resid_vU 0.000000e+00 nrm_rhs = 6.50e-01 nrm_sol = 1.43e+00 nrm_resid = 9.33e-15 residual_ratio = 4.486389e-15 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]= 1.1666015375944028e-16 RHS[ 0][ 0][ 2]=-6.5919492087118670e-16 RHS[ 0][ 0][ 3]= 2.5257573810222311e-15 RHS[ 0][ 0][ 4]= 9.3328123007552222e-15 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 3.8163916471489756e-17 RHS[ 0][ 1][ 2]= 1.3877787807814457e-17 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 2.3852447794681098e-17 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]=-1.3877787807814457e-17 RHS[ 0][ 3][ 2]=-2.3418766925686896e-17 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 1.2961977264479624e-01 (0) Term: 0[ 2, 1]=-1.9359244327110846e-04 (1) Term: 0[ 3, 1]=-2.5665216490371118e-01 (2) Term: 0[ 4, 1]=-1.4220540729077426e-03 (3) Term: 0[ 2, 2]= 9.2665923029522784e-02 (4) Term: 0[ 3, 2]=-7.1506133743770269e-03 (5) Term: 0[ 4, 2]=-3.9620000387046776e-05 (6) Term: 0[ 3, 3]= 5.1893307868279581e-01 (7) Term: 0[ 4, 3]=-5.2525598112222266e-02 (8) Term: 0[ 4, 4]= 3.0211010583495224e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 1.7974047624660914e+00 Term: 1[ 2]= 4.5201129769180639e+01 Term: 1[ 3]= 6.7257523573976563e-01 Term: 1[ 4]= 1.1172026072997250e+01 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 3.0919414542523573e+00 KKT[1][1][ 2]= 1.7885571601319690e+01 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (0) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (1) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (2) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (3) KKT[3][0][ 1, 1]= 1.1803657166624788e+01 (4) KKT[3][0][ 1, 2]= 1.1894529671351799e+01 (5) KKT[3][0][ 1, 3]= 3.4547797039114144e+01 (6) KKT[3][0][ 1, 4]= 5.2059817113711276e+01 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 1.296197726447962e-01 (1) KKT[2][1] = -1.935924432711085e-04 (2) KKT[3][1] = -2.566521649037112e-01 (3) KKT[4][1] = -1.422054072907743e-03 (4) KKT[2][2] = 9.266592302952278e-02 (5) KKT[3][2] = -7.150613374377027e-03 (6) KKT[4][2] = -3.962000038704678e-05 (7) KKT[3][3] = 5.189330786827958e-01 (8) KKT[4][3] = -5.252559811222227e-02 (9) KKT[4][4] = 3.021101058349522e-01 (10) KKT[1][1] = 1.797404762466091e+00 (11) KKT[2][2] = 4.520112976918064e+01 (12) KKT[3][3] = 6.725752357397656e-01 (13) KKT[4][4] = 1.117202607299725e+01 (14) KKT[5][5] = 3.091941454252357e+00 (15) KKT[6][6] = 1.788557160131969e+01 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[9][1] = 2.300000000000000e+00 (22) KKT[9][2] = 5.600000000000000e+00 (23) KKT[9][3] = 1.110000000000000e+01 (24) KKT[9][4] = 1.300000000000000e+00 (25) KKT[8][1] = 1.180365716662479e+01 (26) KKT[8][2] = 1.189452967135180e+01 (27) KKT[8][3] = 3.454779703911414e+01 (28) KKT[8][4] = 5.205981711371128e+01 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = 1.1666015375944028e-16 Trhs[ 0, 1] = -6.5919492087118670e-16 Trhs[ 0, 2] = 2.5257573810222311e-15 Trhs[ 0, 3] = 9.3328123007552222e-15 Trhs[ 0, 4] = 3.8163916471489756e-17 Trhs[ 0, 5] = 1.3877787807814457e-17 Trhs[ 0, 6] = 2.3852447794681098e-17 Trhs[ 0, 7] = -1.3877787807814457e-17 Trhs[ 0, 8] = -2.3418766925686896e-17 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = 2.9439117543315245e-17 Tsol[ 0, 1] = 5.0446486530495238e-18 Tsol[ 0, 2] = -1.2359985467810363e-17 Tsol[ 0, 3] = 1.7286670661265809e-18 Tsol[ 0, 4] = 8.4354583627052274e-17 Tsol[ 0, 5] = -1.5569801774341239e-17 Tsol[ 0, 6] = -1.8989769628439699e-15 Tsol[ 0, 7] = 2.2265551750119036e-16 Tsol[ 0, 8] = -2.9235259226114898e-16 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]= 2.9439117543315245e-17 SOL[ 0][ 0][ 2]= 5.0446486530495238e-18 SOL[ 0][ 0][ 3]=-1.2359985467810363e-17 SOL[ 0][ 0][ 4]= 1.7286670661265809e-18 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 8.4354583627052274e-17 SOL[ 0][ 1][ 2]=-1.5569801774341239e-17 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-1.8989769628439699e-15 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 2.2265551750119036e-16 SOL[ 0][ 3][ 2]=-2.9235259226114898e-16 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]= 1.1666015375944028e-16 resid[ 0][ 2]= 6.9388939039072284e-18 resid[ 0][ 3]=-2.7755575615628914e-17 resid[ 0][ 4]= 6.9388939039072284e-18 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 0.0000000000000000e+00 resid[ 1][ 2]= 0.0000000000000000e+00 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]=-4.3368086899420177e-19 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]=-2.7755575615628914e-17 resid[ 3][ 2]= 4.3368086899420177e-19 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]=-3.4694469519536142e-18 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]=-3.4694469519536142e-18 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 1.3010426069826053e-18 resid[ 6][ 2]= 0.0000000000000000e+00 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 1.166602e-16 max-norm resid_s 0.000000e+00 max-norm resid_c 4.336809e-19 max-norm resid_d 2.775558e-17 max-norm resid_zL 3.469447e-18 max-norm resid_zU 0.000000e+00 max-norm resid_vL 1.301043e-18 max-norm resid_vU 0.000000e+00 nrm_rhs = 6.50e-01 nrm_sol = 1.43e+00 nrm_resid = 1.17e-16 residual_ratio = 5.607987e-17 *** Step Calculated for Iteration: 3 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]=-9.3943926802057317e-03 delta[ 0][ 2]= 1.2165304472800773e-02 delta[ 0][ 3]=-4.6683086101840087e-03 delta[ 0][ 4]= 1.8973968175889683e-03 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-8.3647545802574233e-02 delta[ 1][ 2]=-2.8330078269648076e-03 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]=-1.4303226837705842e+00 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]= 2.0655504538881125e-02 delta[ 3][ 2]= 5.8687152324084224e-02 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]=-1.0476838517357401e+00 delta[ 4][ 2]=-8.8504302955370151e-01 delta[ 4][ 3]=-1.3907789887139324e-01 delta[ 4][ 4]=-2.9715349003495783e-01 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]=-2.1440669022923721e-02 delta[ 6][ 2]=-6.0401589597529899e-02 Component 8: DenseVector "delta[ 7]" with 0 elements: ************************************************** *** Finding Acceptable Trial Point for Iteration 3: ************************************************** --> Starting line search in iteration 3 <-- Mu has changed in line search - resetting watchdog counters. Acceptable Check: overall_error = 6.6992754355230522e-01 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 7.3586884616349546e-02 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 0.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 6.6992754355230522e-01 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 2.9955742525783506e+01 last_obj_val = 3.6879120268713557e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 2.3112021800063745e-01 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 3 The current filter has 0 entries. Relative step size for delta_x = 1.186782e-02 minimal step size ALPHA_MIN = 4.230850E-09 Starting checks for alpha (primal) = 1.00e+00 Checking acceptability for trial step size alpha_primal_test= 1.000000e+00: New values of barrier function = 3.0228106092943143e+01 (reference 3.0226160763559271e+01): New values of constraint violation = 2.0173667046208266e-05 (reference 5.4958283264768149e-02): reference_theta = 5.495828e-02 reference_gradBarrTDelta = -6.494946e-03 Checking sufficient reduction... Succeeded... Checking filter acceptability... Succeeded... reference_theta = 5.495828e-02 reference_gradBarrTDelta = -6.494946e-03 Convergence Check: overall_error = 2.9842353507916034e-02 IpData().tol() = 2.4999999999999999e-08 dual_inf = 3.9825445417251970e-05 dual_inf_tol_ = 1.0000000000000000e+00 constr_viol = 0.0000000000000000e+00 constr_viol_tol_ = 1.0000000000000000e-04 compl_inf = 2.9842353507916034e-02 compl_inf_tol_ = 1.0000000000000000e-04 obj val update iter = 4 Acceptable Check: overall_error = 2.9842353507916034e-02 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 3.9825445417251970e-05 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 0.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 2.9842353507916034e-02 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 2.9945312615447051e+01 last_obj_val = 2.9955742525783506e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 3.4829859585687424e-04 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 4 ************************************************** *** Update HessianMatrix for Iteration 4: ************************************************** ************************************************** *** Summary of Iteration: 4: ************************************************** iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 4 2.9945313e+01 0.00e+00 3.98e-05 -1.7 8.36e-02 - 1.00e+00 1.00e+00h 1 ************************************************** *** Beginning Iteration 4 from the following point: ************************************************** Current barrier parameter mu = 2.0000000000000004e-02 Current fraction-to-the-boundary parameter tau = 9.8999999999999999e-01 ||curr_x||_inf = 6.0111305419105421e-01 ||curr_s||_inf = 2.1053945416483863e+01 ||curr_y_c||_inf = 1.8361448493431126e+01 ||curr_y_d||_inf = 5.9579666687402888e-01 ||curr_z_L||_inf = 3.3324534169736808e-01 ||curr_z_U||_inf = 0.0000000000000000e+00 ||curr_v_L||_inf = 5.9579686687402877e-01 ||curr_v_U||_inf = 0.0000000000000000e+00 ||delta_x||_inf = 1.2165304472800773e-02 ||delta_s||_inf = 8.3647545802574233e-02 ||delta_y_c||_inf = 1.4303226837705842e+00 ||delta_y_d||_inf = 5.8687152324084224e-02 ||delta_z_L||_inf = 1.0476838517357401e+00 ||delta_z_U||_inf = 0.0000000000000000e+00 ||delta_v_L||_inf = 6.0401589597529899e-02 ||delta_v_U||_inf = 0.0000000000000000e+00 DenseVector "curr_x" with 4 elements: curr_x[ 1]= 6.0111305419105421e-01 curr_x[ 2]= 3.7231808097100832e-02 curr_x[ 3]= 3.0333120591366397e-01 curr_x[ 4]= 5.8323931798180968e-02 DenseVector "curr_s" with 2 elements: curr_s[ 1]= 2.1053945416483863e+01 curr_s[ 2]= 5.0338556469624951e+00 DenseVector "curr_y_c" with 1 elements: curr_y_c[ 1]=-1.8361448493431126e+01 DenseVector "curr_y_d" with 2 elements: curr_y_d[ 1]=-4.0398916419159603e-01 curr_y_d[ 2]=-5.9579666687402888e-01 DenseVector "curr_slack_x_L" with 4 elements: curr_slack_x_L[ 1]= 6.0111306419105426e-01 curr_slack_x_L[ 2]= 3.7231818097100834e-02 curr_slack_x_L[ 3]= 3.0333121591366397e-01 curr_slack_x_L[ 4]= 5.8323941798180970e-02 DenseVector "curr_slack_x_U" with 0 elements: DenseVector "curr_z_L" with 4 elements: curr_z_L[ 1]= 4.9645158765724506e-02 curr_z_L[ 2]= 2.4799170563922002e-01 curr_z_L[ 3]= 6.8074953942969557e-02 curr_z_L[ 4]= 3.3324534169736808e-01 DenseVector "curr_z_U" with 0 elements: DenseVector "curr_slack_s_L" with 2 elements: curr_slack_s_L[ 1]= 5.3945626483862696e-02 curr_slack_s_L[ 2]= 3.3855696962494797e-02 DenseVector "curr_slack_s_U" with 0 elements: DenseVector "curr_v_L" with 2 elements: curr_v_L[ 1]= 4.0398936419159598e-01 curr_v_L[ 2]= 5.9579686687402877e-01 DenseVector "curr_v_U" with 0 elements: DenseVector "curr_grad_lag_x" with 4 elements: curr_grad_lag_x[ 1]=-5.0734982881550650e-08 curr_grad_lag_x[ 2]=-3.9825445417251970e-05 curr_grad_lag_x[ 3]=-1.8922175486352222e-05 curr_grad_lag_x[ 4]=-2.8665229497737421e-05 DenseVector "curr_grad_lag_s" with 2 elements: curr_grad_lag_s[ 1]=-1.9999999995023998e-07 curr_grad_lag_s[ 2]=-1.9999999989472883e-07 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]=-9.3943926802057317e-03 delta[ 0][ 2]= 1.2165304472800773e-02 delta[ 0][ 3]=-4.6683086101840087e-03 delta[ 0][ 4]= 1.8973968175889683e-03 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-8.3647545802574233e-02 delta[ 1][ 2]=-2.8330078269648076e-03 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]=-1.4303226837705842e+00 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]= 2.0655504538881125e-02 delta[ 3][ 2]= 5.8687152324084224e-02 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]=-1.0476838517357401e+00 delta[ 4][ 2]=-8.8504302955370151e-01 delta[ 4][ 3]=-1.3907789887139324e-01 delta[ 4][ 4]=-2.9715349003495783e-01 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]=-2.1440669022923721e-02 delta[ 6][ 2]=-6.0401589597529899e-02 Component 8: DenseVector "delta[ 7]" with 0 elements: ***Current NLP Values for Iteration 4: (scaled) (unscaled) Objective...............: 2.9945312615447051e+01 2.9945312615447051e+01 Dual infeasibility......: 3.9825445417251970e-05 3.9825445417251970e-05 Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00 Complementarity.........: 2.9842353507916034e-02 2.9842353507916034e-02 Overall NLP error.......: 2.9842353507916034e-02 2.9842353507916034e-02 DenseVector "grad_f" with 4 elements: grad_f[ 1]= 2.4550000000000001e+01 grad_f[ 2]= 2.6750000000000000e+01 grad_f[ 3]= 3.9000000000000000e+01 grad_f[ 4]= 4.0500000000000000e+01 DenseVector "curr_c" with 1 elements: curr_c[ 1]= 0.0000000000000000e+00 DenseVector "curr_d" with 2 elements: curr_d[ 1]= 2.1053925242816817e+01 curr_d[ 2]= 5.0338556469624951e+00 DenseVector "curr_d - curr_s" with 2 elements: curr_d - curr_s[ 1]=-2.0173667046208266e-05 curr_d - curr_s[ 2]= 0.0000000000000000e+00 GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements: jac_c[ 1, 1]= 1.0000000000000000e+00 (0) jac_c[ 1, 2]= 1.0000000000000000e+00 (1) jac_c[ 1, 3]= 1.0000000000000000e+00 (2) jac_c[ 1, 4]= 1.0000000000000000e+00 (3) GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements: jac_d[ 2, 1]= 2.2999999999999998e+00 (0) jac_d[ 2, 2]= 5.5999999999999996e+00 (1) jac_d[ 2, 3]= 1.1100000000000000e+01 (2) jac_d[ 2, 4]= 1.3000000000000000e+00 (3) jac_d[ 1, 1]= 1.1803717741464771e+01 (4) jac_d[ 1, 2]= 1.1891750367844269e+01 (5) jac_d[ 1, 3]= 3.4548333741645472e+01 (6) jac_d[ 1, 4]= 5.2057829831274105e+01 (7) SymTMatrix "W" of dimension 4 with 10 nonzero elements: W[ 1, 1]= 1.2520753270018345e-01 (0) W[ 2, 1]=-2.8191643735521222e-04 (1) W[ 3, 1]=-2.4781273611387003e-01 (2) W[ 4, 1]=-1.4410901608037975e-03 (3) W[ 2, 2]= 8.9501988165133273e-02 (4) W[ 3, 2]=-1.0415428942485903e-02 (5) W[ 4, 2]=-6.0568203252760305e-05 (6) W[ 3, 3]= 5.0260734681363040e-01 (7) W[ 4, 3]=-5.3241209737109475e-02 (8) W[ 4, 4]= 2.9178817341042568e-01 (9) ************************************************** *** Update Barrier Parameter for Iteration 4: ************************************************** Optimality Error for Barrier Sub-problem = 1.076682e-02 sub_problem_error < kappa_eps * mu (2.000000e-01) Updating mu= 2.0000000000000004e-02 and tau= 9.8999999999999999e-01 to new_mu= 2.8284271247461909e-03 and new_tau= 9.9717157287525382e-01 sub_problem_error < kappa_eps * mu (2.828427e-02) Updating mu= 2.8284271247461909e-03 and tau= 9.9717157287525382e-01 to new_mu= 1.5042412372345582e-04 and new_tau= 9.9984957587627654e-01 Barrier Parameter: 1.504241e-04 ************************************************** *** Solving the Primal Dual System for Iteration 4: ************************************************** Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]= 4.9394866888990981e-02 RHS[ 0][ 0][ 2]= 2.4391167814604045e-01 RHS[ 0][ 0][ 3]= 6.7560126105459459e-02 RHS[ 0][ 0][ 4]= 3.3063756347666184e-01 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 4.0120072604784368e-01 RHS[ 0][ 1][ 2]= 5.9135357202464633e-01 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 0.0000000000000000e+00 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]=-2.0173667046208266e-05 RHS[ 0][ 3][ 2]= 0.0000000000000000e+00 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 1.2520753270018345e-01 (0) Term: 0[ 2, 1]=-2.8191643735521222e-04 (1) Term: 0[ 3, 1]=-2.4781273611387003e-01 (2) Term: 0[ 4, 1]=-1.4410901608037975e-03 (3) Term: 0[ 2, 2]= 8.9501988165133273e-02 (4) Term: 0[ 3, 2]=-1.0415428942485903e-02 (5) Term: 0[ 4, 2]=-6.0568203252760305e-05 (6) Term: 0[ 3, 3]= 5.0260734681363040e-01 (7) Term: 0[ 4, 3]=-5.3241209737109475e-02 (8) Term: 0[ 4, 4]= 2.9178817341042568e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 8.2588720364170254e-02 Term: 1[ 2]= 6.6607465956257084e+00 Term: 1[ 3]= 2.2442449168286549e-01 Term: 1[ 4]= 5.7136971786046438e+00 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 7.4888251471589715e+00 KKT[1][1][ 2]= 1.7598127356056210e+01 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (0) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (1) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (2) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (3) KKT[3][0][ 1, 1]= 1.1803717741464771e+01 (4) KKT[3][0][ 1, 2]= 1.1891750367844269e+01 (5) KKT[3][0][ 1, 3]= 3.4548333741645472e+01 (6) KKT[3][0][ 1, 4]= 5.2057829831274105e+01 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 1.252075327001834e-01 (1) KKT[2][1] = -2.819164373552122e-04 (2) KKT[3][1] = -2.478127361138700e-01 (3) KKT[4][1] = -1.441090160803797e-03 (4) KKT[2][2] = 8.950198816513327e-02 (5) KKT[3][2] = -1.041542894248590e-02 (6) KKT[4][2] = -6.056820325276031e-05 (7) KKT[3][3] = 5.026073468136304e-01 (8) KKT[4][3] = -5.324120973710948e-02 (9) KKT[4][4] = 2.917881734104257e-01 (10) KKT[1][1] = 8.258872036417025e-02 (11) KKT[2][2] = 6.660746595625708e+00 (12) KKT[3][3] = 2.244244916828655e-01 (13) KKT[4][4] = 5.713697178604644e+00 (14) KKT[5][5] = 7.488825147158972e+00 (15) KKT[6][6] = 1.759812735605621e+01 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[9][1] = 2.300000000000000e+00 (22) KKT[9][2] = 5.600000000000000e+00 (23) KKT[9][3] = 1.110000000000000e+01 (24) KKT[9][4] = 1.300000000000000e+00 (25) KKT[8][1] = 1.180371774146477e+01 (26) KKT[8][2] = 1.189175036784427e+01 (27) KKT[8][3] = 3.454833374164547e+01 (28) KKT[8][4] = 5.205782983127411e+01 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = 4.9394866888990981e-02 Trhs[ 0, 1] = 2.4391167814604045e-01 Trhs[ 0, 2] = 6.7560126105459459e-02 Trhs[ 0, 3] = 3.3063756347666184e-01 Trhs[ 0, 4] = 4.0120072604784368e-01 Trhs[ 0, 5] = 5.9135357202464633e-01 Trhs[ 0, 6] = 0.0000000000000000e+00 Trhs[ 0, 7] = -2.0173667046208266e-05 Trhs[ 0, 8] = 0.0000000000000000e+00 HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9 Ma97SolverInterface::Factorization: ma97_factor_solve took 0.000 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -3.2043419447665721e-02 Tsol[ 0, 1] = 3.4467436442666886e-02 Tsol[ 0, 2] = -8.5009307475804423e-03 Tsol[ 0, 3] = 6.0769137525792877e-03 Tsol[ 0, 4] = 5.4324794480247032e-02 Tsol[ 0, 5] = 3.2857435929513588e-02 Tsol[ 0, 6] = 1.7717710171043718e-02 Tsol[ 0, 7] = 5.6281609700731816e-03 Tsol[ 0, 8] = -1.3124229943609074e-02 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-3.2043419447665721e-02 SOL[ 0][ 0][ 2]= 3.4467436442666886e-02 SOL[ 0][ 0][ 3]=-8.5009307475804423e-03 SOL[ 0][ 0][ 4]= 6.0769137525792877e-03 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 5.4324794480247032e-02 SOL[ 0][ 1][ 2]= 3.2857435929513588e-02 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]= 1.7717710171043718e-02 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 5.6281609700731816e-03 SOL[ 0][ 3][ 2]=-1.3124229943609074e-02 Number of trial factorizations performed: 1 Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]=-1.2754763666901675e-15 resid[ 0][ 2]= 1.0437377145292720e-14 resid[ 0][ 3]=-1.3064656507241063e-14 resid[ 0][ 4]= 3.3245521407435780e-14 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]=-1.9949319973733282e-17 resid[ 1][ 2]= 6.5919492087118670e-17 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]= 1.1275702593849246e-17 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]=-1.3877787807814457e-17 resid[ 3][ 2]=-2.7755575615628914e-17 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]= 0.0000000000000000e+00 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 0.0000000000000000e+00 resid[ 6][ 2]= 0.0000000000000000e+00 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 3.324552e-14 max-norm resid_s 6.591949e-17 max-norm resid_c 1.127570e-17 max-norm resid_d 2.775558e-17 max-norm resid_zL 0.000000e+00 max-norm resid_zU 0.000000e+00 max-norm resid_vL 0.000000e+00 max-norm resid_vU 0.000000e+00 nrm_rhs = 2.97e-02 nrm_sol = 2.96e-01 nrm_resid = 3.32e-14 residual_ratio = 1.020940e-13 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-1.2754763666901675e-15 RHS[ 0][ 0][ 2]= 1.0437377145292720e-14 RHS[ 0][ 0][ 3]=-1.3064656507241063e-14 RHS[ 0][ 0][ 4]= 3.3245521407435780e-14 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]=-1.9949319973733282e-17 RHS[ 0][ 1][ 2]= 6.5919492087118670e-17 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 1.1275702593849246e-17 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]=-1.3877787807814457e-17 RHS[ 0][ 3][ 2]=-2.7755575615628914e-17 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 1.2520753270018345e-01 (0) Term: 0[ 2, 1]=-2.8191643735521222e-04 (1) Term: 0[ 3, 1]=-2.4781273611387003e-01 (2) Term: 0[ 4, 1]=-1.4410901608037975e-03 (3) Term: 0[ 2, 2]= 8.9501988165133273e-02 (4) Term: 0[ 3, 2]=-1.0415428942485903e-02 (5) Term: 0[ 4, 2]=-6.0568203252760305e-05 (6) Term: 0[ 3, 3]= 5.0260734681363040e-01 (7) Term: 0[ 4, 3]=-5.3241209737109475e-02 (8) Term: 0[ 4, 4]= 2.9178817341042568e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 8.2588720364170254e-02 Term: 1[ 2]= 6.6607465956257084e+00 Term: 1[ 3]= 2.2442449168286549e-01 Term: 1[ 4]= 5.7136971786046438e+00 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 7.4888251471589715e+00 KKT[1][1][ 2]= 1.7598127356056210e+01 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (0) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (1) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (2) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (3) KKT[3][0][ 1, 1]= 1.1803717741464771e+01 (4) KKT[3][0][ 1, 2]= 1.1891750367844269e+01 (5) KKT[3][0][ 1, 3]= 3.4548333741645472e+01 (6) KKT[3][0][ 1, 4]= 5.2057829831274105e+01 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 1.252075327001834e-01 (1) KKT[2][1] = -2.819164373552122e-04 (2) KKT[3][1] = -2.478127361138700e-01 (3) KKT[4][1] = -1.441090160803797e-03 (4) KKT[2][2] = 8.950198816513327e-02 (5) KKT[3][2] = -1.041542894248590e-02 (6) KKT[4][2] = -6.056820325276031e-05 (7) KKT[3][3] = 5.026073468136304e-01 (8) KKT[4][3] = -5.324120973710948e-02 (9) KKT[4][4] = 2.917881734104257e-01 (10) KKT[1][1] = 8.258872036417025e-02 (11) KKT[2][2] = 6.660746595625708e+00 (12) KKT[3][3] = 2.244244916828655e-01 (13) KKT[4][4] = 5.713697178604644e+00 (14) KKT[5][5] = 7.488825147158972e+00 (15) KKT[6][6] = 1.759812735605621e+01 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[9][1] = 2.300000000000000e+00 (22) KKT[9][2] = 5.600000000000000e+00 (23) KKT[9][3] = 1.110000000000000e+01 (24) KKT[9][4] = 1.300000000000000e+00 (25) KKT[8][1] = 1.180371774146477e+01 (26) KKT[8][2] = 1.189175036784427e+01 (27) KKT[8][3] = 3.454833374164547e+01 (28) KKT[8][4] = 5.205782983127411e+01 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -1.2754763666901675e-15 Trhs[ 0, 1] = 1.0437377145292720e-14 Trhs[ 0, 2] = -1.3064656507241063e-14 Trhs[ 0, 3] = 3.3245521407435780e-14 Trhs[ 0, 4] = -1.9949319973733282e-17 Trhs[ 0, 5] = 6.5919492087118670e-17 Trhs[ 0, 6] = 1.1275702593849246e-17 Trhs[ 0, 7] = -1.3877787807814457e-17 Trhs[ 0, 8] = -2.7755575615628914e-17 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -2.6752637318296076e-15 Tsol[ 0, 1] = 3.1956905391411091e-15 Tsol[ 0, 2] = -1.1510790137797347e-15 Tsol[ 0, 3] = 6.4192790906208209e-16 Tsol[ 0, 4] = 8.7685880494218636e-17 Tsol[ 0, 5] = -1.7195475957660617e-16 Tsol[ 0, 6] = -1.8779450843895642e-15 Tsol[ 0, 7] = 6.7661354686961417e-16 Tsol[ 0, 8] = -3.0920012505962600e-15 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-2.6752637318296076e-15 SOL[ 0][ 0][ 2]= 3.1956905391411091e-15 SOL[ 0][ 0][ 3]=-1.1510790137797347e-15 SOL[ 0][ 0][ 4]= 6.4192790906208209e-16 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 8.7685880494218636e-17 SOL[ 0][ 1][ 2]=-1.7195475957660617e-16 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-1.8779450843895642e-15 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 6.7661354686961417e-16 SOL[ 0][ 3][ 2]=-3.0920012505962600e-15 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]= 1.2801116287625635e-18 resid[ 0][ 2]=-9.1276270396123405e-18 resid[ 0][ 3]= 2.2097395527970187e-17 resid[ 0][ 4]=-5.6581800876587263e-18 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 0.0000000000000000e+00 resid[ 1][ 2]= 0.0000000000000000e+00 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]= 8.6736173798840355e-19 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]= 7.6327832942979512e-17 resid[ 3][ 2]= 6.9388939039072284e-18 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 6.9388939039072284e-18 resid[ 4][ 2]=-3.2526065174565133e-19 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 3.4694469519536142e-18 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 7.5894152073985310e-19 resid[ 6][ 2]=-1.8431436932253575e-18 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 2.209740e-17 max-norm resid_s 0.000000e+00 max-norm resid_c 8.673617e-19 max-norm resid_d 7.632783e-17 max-norm resid_zL 6.938894e-18 max-norm resid_zU 0.000000e+00 max-norm resid_vL 1.843144e-18 max-norm resid_vU 0.000000e+00 nrm_rhs = 2.97e-02 nrm_sol = 2.96e-01 nrm_resid = 7.63e-17 residual_ratio = 2.343958e-16 *** Step Calculated for Iteration: 4 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 3.2043419447663042e-02 delta[ 0][ 2]=-3.4467436442663688e-02 delta[ 0][ 3]= 8.5009307475792904e-03 delta[ 0][ 4]=-6.0769137525786459e-03 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-5.4324794480246942e-02 delta[ 1][ 2]=-3.2857435929513762e-02 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]=-1.7717710171045595e-02 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-5.6281609700725051e-03 delta[ 3][ 2]= 1.3124229943605983e-02 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]=-5.2041341128007491e-02 delta[ 4][ 2]=-1.4372642141798817e-02 delta[ 4][ 3]=-6.9486863838561300e-02 delta[ 4][ 4]=-2.9594458223918602e-01 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]= 5.6279624743137925e-03 delta[ 6][ 2]=-1.3124428439364641e-02 Component 8: DenseVector "delta[ 7]" with 0 elements: ************************************************** *** Finding Acceptable Trial Point for Iteration 4: ************************************************** --> Starting line search in iteration 4 <-- Mu has changed in line search - resetting watchdog counters. Acceptable Check: overall_error = 2.9842353507916034e-02 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 3.9825445417251970e-05 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 0.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 2.9842353507916034e-02 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 2.9945312615447051e+01 last_obj_val = 2.9955742525783506e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 3.4829859585687424e-04 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 4 The current filter has 0 entries. Relative step size for delta_x = 3.323022e-02 minimal step size ALPHA_MIN = 2.038711E-13 Starting checks for alpha (primal) = 9.93e-01 Checking acceptability for trial step size alpha_primal_test= 9.928710e-01: New values of barrier function = 2.9900084025862331e+01 (reference 2.9947439563499405e+01): New values of constraint violation = 1.8956964213234784e-04 (reference 2.0173667046208266e-05): reference_theta = 2.017367e-05 reference_gradBarrTDelta = -4.947652e-02 Checking Armijo Condition... Succeeded... Checking filter acceptability... Succeeded... reference_theta = 2.017367e-05 reference_gradBarrTDelta = -4.947652e-02 Convergence Check: overall_error = 1.1527623040680002e-02 IpData().tol() = 2.4999999999999999e-08 dual_inf = 1.1527623040680002e-02 dual_inf_tol_ = 1.0000000000000000e+00 constr_viol = 1.8145491853971407e-04 constr_viol_tol_ = 1.0000000000000000e-04 compl_inf = 2.6652207192442525e-03 compl_inf_tol_ = 1.0000000000000000e-04 obj val update iter = 5 Acceptable Check: overall_error = 1.1527623040680002e-02 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 1.1527623040680002e-02 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 1.8145491853971407e-04 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 2.6652207192442525e-03 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 2.9895751787428928e+01 last_obj_val = 2.9945312615447051e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 1.6577883162303742e-03 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 5 ************************************************** *** Update HessianMatrix for Iteration 5: ************************************************** ************************************************** *** Summary of Iteration: 5: ************************************************** iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 5 2.9895752e+01 1.81e-04 1.15e-02 -3.8 5.43e-02 - 9.54e-01 9.93e-01f 1 ************************************************** *** Beginning Iteration 5 from the following point: ************************************************** Current barrier parameter mu = 1.5042412372345582e-04 Current fraction-to-the-boundary parameter tau = 9.9984957587627654e-01 ||curr_x||_inf = 6.3292803535819031e-01 ||curr_s||_inf = 2.1000007904723592e+01 ||curr_y_c||_inf = 1.8379039893635380e+01 ||curr_y_d||_inf = 5.8276599987012268e-01 ||curr_z_L||_inf = 2.3428289735127311e-01 ||curr_z_U||_inf = 0.0000000000000000e+00 ||curr_v_L||_inf = 5.8327862064003400e-01 ||curr_v_U||_inf = 0.0000000000000000e+00 ||delta_x||_inf = 3.4467436442663688e-02 ||delta_s||_inf = 5.4324794480246942e-02 ||delta_y_c||_inf = 1.7717710171045595e-02 ||delta_y_d||_inf = 1.3124229943605983e-02 ||delta_z_L||_inf = 2.9594458223918602e-01 ||delta_z_U||_inf = 0.0000000000000000e+00 ||delta_v_L||_inf = 1.3124428439364641e-02 ||delta_v_U||_inf = 0.0000000000000000e+00 DenseVector "curr_x" with 4 elements: curr_x[ 1]= 6.3292803535819031e-01 curr_x[ 2]= 3.0100908083493735e-03 curr_x[ 3]= 3.1177153332875474e-01 curr_x[ 4]= 5.2290340504705574e-02 DenseVector "curr_s" with 2 elements: curr_s[ 1]= 2.1000007904723592e+01 curr_s[ 2]= 5.0012324524558895e+00 DenseVector "curr_y_c" with 1 elements: curr_y_c[ 1]=-1.8379039893635380e+01 DenseVector "curr_y_d" with 2 elements: curr_y_d[ 1]=-4.0957720187156110e-01 curr_y_d[ 2]=-5.8276599987012268e-01 DenseVector "curr_slack_x_L" with 4 elements: curr_slack_x_L[ 1]= 6.3292804535819036e-01 curr_slack_x_L[ 2]= 3.0101008083493735e-03 curr_slack_x_L[ 3]= 3.1177154332875473e-01 curr_slack_x_L[ 4]= 5.2290350504705575e-02 DenseVector "curr_slack_x_U" with 0 elements: DenseVector "curr_z_L" with 4 elements: curr_z_L[ 1]= 7.4678295044414145e-06 curr_z_L[ 2]= 2.3428289735127311e-01 curr_z_L[ 3]= 1.7975022750407604e-03 curr_z_L[ 4]= 5.0969647239301086e-02 DenseVector "curr_z_U" with 0 elements: DenseVector "curr_slack_s_L" with 2 elements: curr_slack_s_L[ 1]= 8.1147235917455873e-06 curr_slack_s_L[ 2]= 1.2325024558892395e-03 DenseVector "curr_slack_s_U" with 0 elements: DenseVector "curr_v_L" with 2 elements: curr_v_L[ 1]= 4.0935738614962902e-01 curr_v_L[ 2]= 5.8327862064003400e-01 DenseVector "curr_v_U" with 0 elements: DenseVector "curr_grad_lag_x" with 4 elements: curr_grad_lag_x[ 1]=-2.0670352531831845e-03 curr_grad_lag_x[ 2]=-5.1559855680455291e-04 curr_grad_lag_x[ 3]=-2.9063595997287778e-03 curr_grad_lag_x[ 4]=-1.1527623040680002e-02 DenseVector "curr_grad_lag_s" with 2 elements: curr_grad_lag_s[ 1]= 2.1981572193208176e-04 curr_grad_lag_s[ 2]=-5.1262076991132055e-04 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 3.2043419447663042e-02 delta[ 0][ 2]=-3.4467436442663688e-02 delta[ 0][ 3]= 8.5009307475792904e-03 delta[ 0][ 4]=-6.0769137525786459e-03 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-5.4324794480246942e-02 delta[ 1][ 2]=-3.2857435929513762e-02 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]=-1.7717710171045595e-02 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-5.6281609700725051e-03 delta[ 3][ 2]= 1.3124229943605983e-02 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]=-5.2041341128007491e-02 delta[ 4][ 2]=-1.4372642141798817e-02 delta[ 4][ 3]=-6.9486863838561300e-02 delta[ 4][ 4]=-2.9594458223918602e-01 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]= 5.6279624743137925e-03 delta[ 6][ 2]=-1.3124428439364641e-02 Component 8: DenseVector "delta[ 7]" with 0 elements: ***Current NLP Values for Iteration 5: (scaled) (unscaled) Objective...............: 2.9895751787428928e+01 2.9895751787428928e+01 Dual infeasibility......: 1.1527623040680002e-02 1.1527623040680002e-02 Constraint violation....: 1.8145491853971407e-04 1.8145491853971407e-04 Complementarity.........: 2.6652207192442525e-03 2.6652207192442525e-03 Overall NLP error.......: 1.1527623040680002e-02 1.1527623040680002e-02 DenseVector "grad_f" with 4 elements: grad_f[ 1]= 2.4550000000000001e+01 grad_f[ 2]= 2.6750000000000000e+01 grad_f[ 3]= 3.9000000000000000e+01 grad_f[ 4]= 4.0500000000000000e+01 DenseVector "curr_c" with 1 elements: curr_c[ 1]= 0.0000000000000000e+00 DenseVector "curr_d" with 2 elements: curr_d[ 1]= 2.0999818335081461e+01 curr_d[ 2]= 5.0012324524558887e+00 DenseVector "curr_d - curr_s" with 2 elements: curr_d - curr_s[ 1]=-1.8956964213145966e-04 curr_d - curr_s[ 2]=-8.8817841970012523e-16 GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements: jac_c[ 1, 1]= 1.0000000000000000e+00 (0) jac_c[ 1, 2]= 1.0000000000000000e+00 (1) jac_c[ 1, 3]= 1.0000000000000000e+00 (2) jac_c[ 1, 4]= 1.0000000000000000e+00 (3) GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements: jac_d[ 2, 1]= 2.2999999999999998e+00 (0) jac_d[ 2, 2]= 5.5999999999999996e+00 (1) jac_d[ 2, 3]= 1.1100000000000000e+01 (2) jac_d[ 2, 4]= 1.3000000000000000e+00 (3) jac_d[ 1, 1]= 1.1799137871942602e+01 (4) jac_d[ 1, 2]= 1.1899351785272966e+01 (5) jac_d[ 1, 3]= 3.4556040474072297e+01 (6) jac_d[ 1, 4]= 5.2063254948994434e+01 (7) SymTMatrix "W" of dimension 4 with 10 nonzero elements: W[ 1, 1]= 1.2305961857978347e-01 (0) W[ 2, 1]=-2.2336062622908545e-05 (1) W[ 3, 1]=-2.4961101138400910e-01 (2) W[ 4, 1]=-1.2661541401533249e-03 (3) W[ 2, 2]= 8.8201245092131869e-02 (4) W[ 3, 2]=-8.0553529514881437e-04 (5) W[ 4, 2]=-4.0860851584115736e-06 (6) W[ 3, 3]= 5.1440221112556306e-01 (7) W[ 4, 3]=-4.5663009914121054e-02 (8) W[ 4, 4]= 2.8758319842751201e-01 (9) ************************************************** *** Update Barrier Parameter for Iteration 5: ************************************************** Optimality Error for Barrier Sub-problem = 1.152762e-02 Barrier Parameter: 1.504241e-04 ************************************************** *** Solving the Primal Dual System for Iteration 5: ************************************************** Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-2.2972297815884190e-03 RHS[ 0][ 0][ 2]= 1.8379418202100575e-01 RHS[ 0][ 0][ 3]=-1.5913377112485895e-03 RHS[ 0][ 0][ 4]= 3.6565316668182600e-02 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]=-1.8127606721960777e+01 RHS[ 0][ 1][ 2]= 4.6071827400093157e-01 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 0.0000000000000000e+00 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]=-1.8956964213145966e-04 RHS[ 0][ 3][ 2]=-8.8817841970012523e-16 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 1.2305961857978347e-01 (0) Term: 0[ 2, 1]=-2.2336062622908545e-05 (1) Term: 0[ 3, 1]=-2.4961101138400910e-01 (2) Term: 0[ 4, 1]=-1.2661541401533249e-03 (3) Term: 0[ 2, 2]= 8.8201245092131869e-02 (4) Term: 0[ 3, 2]=-8.0553529514881437e-04 (5) Term: 0[ 4, 2]=-4.0860851584115736e-06 (6) Term: 0[ 3, 3]= 5.1440221112556306e-01 (7) Term: 0[ 4, 3]=-4.5663009914121054e-02 (8) Term: 0[ 4, 4]= 2.8758319842751201e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 1.1798860169350177e-05 Term: 1[ 2]= 7.7832242927354017e+01 Term: 1[ 3]= 5.7654468905308093e-03 Term: 1[ 4]= 9.7474288749918325e-01 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 5.0446251375220374e+04 KKT[1][1][ 2]= 4.7324743074787926e+02 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (0) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (1) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (2) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (3) KKT[3][0][ 1, 1]= 1.1799137871942602e+01 (4) KKT[3][0][ 1, 2]= 1.1899351785272966e+01 (5) KKT[3][0][ 1, 3]= 3.4556040474072297e+01 (6) KKT[3][0][ 1, 4]= 5.2063254948994434e+01 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 1.230596185797835e-01 (1) KKT[2][1] = -2.233606262290854e-05 (2) KKT[3][1] = -2.496110113840091e-01 (3) KKT[4][1] = -1.266154140153325e-03 (4) KKT[2][2] = 8.820124509213187e-02 (5) KKT[3][2] = -8.055352951488144e-04 (6) KKT[4][2] = -4.086085158411574e-06 (7) KKT[3][3] = 5.144022111255631e-01 (8) KKT[4][3] = -4.566300991412105e-02 (9) KKT[4][4] = 2.875831984275120e-01 (10) KKT[1][1] = 1.179886016935018e-05 (11) KKT[2][2] = 7.783224292735402e+01 (12) KKT[3][3] = 5.765446890530809e-03 (13) KKT[4][4] = 9.747428874991833e-01 (14) KKT[5][5] = 5.044625137522037e+04 (15) KKT[6][6] = 4.732474307478793e+02 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[9][1] = 2.300000000000000e+00 (22) KKT[9][2] = 5.600000000000000e+00 (23) KKT[9][3] = 1.110000000000000e+01 (24) KKT[9][4] = 1.300000000000000e+00 (25) KKT[8][1] = 1.179913787194260e+01 (26) KKT[8][2] = 1.189935178527297e+01 (27) KKT[8][3] = 3.455604047407230e+01 (28) KKT[8][4] = 5.206325494899443e+01 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -2.2972297815884190e-03 Trhs[ 0, 1] = 1.8379418202100575e-01 Trhs[ 0, 2] = -1.5913377112485895e-03 Trhs[ 0, 3] = 3.6565316668182600e-02 Trhs[ 0, 4] = -1.8127606721960777e+01 Trhs[ 0, 5] = 4.6071827400093157e-01 Trhs[ 0, 6] = 0.0000000000000000e+00 Trhs[ 0, 7] = -1.8956964213145966e-04 Trhs[ 0, 8] = -8.8817841970012523e-16 HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9 Ma97SolverInterface::Factorization: ma97_factor_solve took 0.000 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -2.1255445951985272e-03 Tsol[ 0, 1] = 2.4814919672343319e-03 Tsol[ 0, 2] = -7.7307156769926126e-04 Tsol[ 0, 3] = 4.1712419566345310e-04 Tsol[ 0, 4] = -3.5932725767762099e-04 Tsol[ 0, 5] = 9.6876950045722337e-04 Tsol[ 0, 6] = -7.5948275296856445e-03 Tsol[ 0, 7] = 8.9355518692357805e-04 Tsol[ 0, 8] = -2.2505969226441422e-03 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-2.1255445951985272e-03 SOL[ 0][ 0][ 2]= 2.4814919672343319e-03 SOL[ 0][ 0][ 3]=-7.7307156769926126e-04 SOL[ 0][ 0][ 4]= 4.1712419566345310e-04 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]=-3.5932725767762099e-04 SOL[ 0][ 1][ 2]= 9.6876950045722337e-04 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-7.5948275296856445e-03 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 8.9355518692357805e-04 SOL[ 0][ 3][ 2]=-2.2505969226441422e-03 Number of trial factorizations performed: 1 Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]=-4.0425679297129147e-12 resid[ 0][ 2]=-3.1576412491685080e-12 resid[ 0][ 3]=-2.0984502763915502e-11 resid[ 0][ 4]=-3.4087869679733096e-11 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]=-1.3747683547116196e-16 resid[ 1][ 2]= 2.8622937353617317e-17 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]=-3.5236570605778894e-18 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]= 2.6020852139652106e-18 resid[ 3][ 2]=-1.3010426069826053e-18 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]= 3.3881317890172014e-21 resid[ 4][ 3]=-5.4210108624275222e-20 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 0.0000000000000000e+00 resid[ 6][ 2]= 0.0000000000000000e+00 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 3.408787e-11 max-norm resid_s 1.374768e-16 max-norm resid_c 3.523657e-18 max-norm resid_d 2.602085e-18 max-norm resid_zL 5.421011e-20 max-norm resid_zU 0.000000e+00 max-norm resid_vL 0.000000e+00 max-norm resid_vU 0.000000e+00 nrm_rhs = 1.15e-02 nrm_sol = 4.77e-02 nrm_resid = 3.41e-11 residual_ratio = 5.756728e-10 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-4.0425679297129147e-12 RHS[ 0][ 0][ 2]=-3.1576401235810261e-12 RHS[ 0][ 0][ 3]=-2.0984502937793171e-11 RHS[ 0][ 0][ 4]=-3.4087869679733096e-11 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]=-1.3747683547116196e-16 RHS[ 0][ 1][ 2]= 2.8622937353617317e-17 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]=-3.5236570605778894e-18 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]= 2.6020852139652106e-18 RHS[ 0][ 3][ 2]=-1.3010426069826053e-18 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 1.2305961857978347e-01 (0) Term: 0[ 2, 1]=-2.2336062622908545e-05 (1) Term: 0[ 3, 1]=-2.4961101138400910e-01 (2) Term: 0[ 4, 1]=-1.2661541401533249e-03 (3) Term: 0[ 2, 2]= 8.8201245092131869e-02 (4) Term: 0[ 3, 2]=-8.0553529514881437e-04 (5) Term: 0[ 4, 2]=-4.0860851584115736e-06 (6) Term: 0[ 3, 3]= 5.1440221112556306e-01 (7) Term: 0[ 4, 3]=-4.5663009914121054e-02 (8) Term: 0[ 4, 4]= 2.8758319842751201e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 1.1798860169350177e-05 Term: 1[ 2]= 7.7832242927354017e+01 Term: 1[ 3]= 5.7654468905308093e-03 Term: 1[ 4]= 9.7474288749918325e-01 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 5.0446251375220374e+04 KKT[1][1][ 2]= 4.7324743074787926e+02 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (0) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (1) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (2) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (3) KKT[3][0][ 1, 1]= 1.1799137871942602e+01 (4) KKT[3][0][ 1, 2]= 1.1899351785272966e+01 (5) KKT[3][0][ 1, 3]= 3.4556040474072297e+01 (6) KKT[3][0][ 1, 4]= 5.2063254948994434e+01 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 1.230596185797835e-01 (1) KKT[2][1] = -2.233606262290854e-05 (2) KKT[3][1] = -2.496110113840091e-01 (3) KKT[4][1] = -1.266154140153325e-03 (4) KKT[2][2] = 8.820124509213187e-02 (5) KKT[3][2] = -8.055352951488144e-04 (6) KKT[4][2] = -4.086085158411574e-06 (7) KKT[3][3] = 5.144022111255631e-01 (8) KKT[4][3] = -4.566300991412105e-02 (9) KKT[4][4] = 2.875831984275120e-01 (10) KKT[1][1] = 1.179886016935018e-05 (11) KKT[2][2] = 7.783224292735402e+01 (12) KKT[3][3] = 5.765446890530809e-03 (13) KKT[4][4] = 9.747428874991833e-01 (14) KKT[5][5] = 5.044625137522037e+04 (15) KKT[6][6] = 4.732474307478793e+02 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[9][1] = 2.300000000000000e+00 (22) KKT[9][2] = 5.600000000000000e+00 (23) KKT[9][3] = 1.110000000000000e+01 (24) KKT[9][4] = 1.300000000000000e+00 (25) KKT[8][1] = 1.179913787194260e+01 (26) KKT[8][2] = 1.189935178527297e+01 (27) KKT[8][3] = 3.455604047407230e+01 (28) KKT[8][4] = 5.206325494899443e+01 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -4.0425679297129147e-12 Trhs[ 0, 1] = -3.1576401235810261e-12 Trhs[ 0, 2] = -2.0984502937793171e-11 Trhs[ 0, 3] = -3.4087869679733096e-11 Trhs[ 0, 4] = -1.3747683547116196e-16 Trhs[ 0, 5] = 2.8622937353617317e-17 Trhs[ 0, 6] = -3.5236570605778894e-18 Trhs[ 0, 7] = 2.6020852139652106e-18 Trhs[ 0, 8] = -1.3010426069826053e-18 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -1.0244044505623393e-14 Tsol[ 0, 1] = 1.2128908198754586e-14 Tsol[ 0, 2] = -4.2752745139531924e-15 Tsol[ 0, 3] = 2.3868871637605245e-15 Tsol[ 0, 4] = -1.4794345708084938e-17 Tsol[ 0, 5] = 9.2908007035130885e-18 Tsol[ 0, 6] = 4.7518840430195424e-12 Tsol[ 0, 7] = -7.4618180568649441e-13 Tsol[ 0, 8] = 4.3682246251745416e-15 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-1.0244044505623393e-14 SOL[ 0][ 0][ 2]= 1.2128908198754586e-14 SOL[ 0][ 0][ 3]=-4.2752745139531924e-15 SOL[ 0][ 0][ 4]= 2.3868871637605245e-15 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]=-1.4794345708084938e-17 SOL[ 0][ 1][ 2]= 9.2908007035130885e-18 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]= 4.7518840430195424e-12 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]=-7.4618180568649441e-13 SOL[ 0][ 3][ 2]= 4.3682246251745416e-15 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]= 4.3368086899420177e-19 resid[ 0][ 2]= 1.3010426069826053e-18 resid[ 0][ 3]= 3.0357660829594124e-18 resid[ 0][ 4]= 1.7347234759768071e-18 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 0.0000000000000000e+00 resid[ 1][ 2]= 0.0000000000000000e+00 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]= 5.4210108624275222e-20 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]= 5.2041704279304213e-18 resid[ 3][ 2]=-2.1684043449710089e-19 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]= 1.0164395367051604e-20 resid[ 4][ 3]= 5.4210108624275222e-20 resid[ 4][ 4]=-4.3368086899420177e-19 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 1.5359089613884618e-20 resid[ 6][ 2]=-2.1175823681357508e-21 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 3.035766e-18 max-norm resid_s 0.000000e+00 max-norm resid_c 5.421011e-20 max-norm resid_d 5.204170e-18 max-norm resid_zL 4.336809e-19 max-norm resid_zU 0.000000e+00 max-norm resid_vL 1.535909e-20 max-norm resid_vU 0.000000e+00 nrm_rhs = 1.15e-02 nrm_sol = 4.77e-02 nrm_resid = 5.20e-18 residual_ratio = 8.788754e-17 *** Step Calculated for Iteration: 5 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 2.1255445951882833e-03 delta[ 0][ 2]=-2.4814919672222031e-03 delta[ 0][ 3]= 7.7307156769498603e-04 delta[ 0][ 4]=-4.1712419566106623e-04 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]= 3.5932725767760619e-04 delta[ 1][ 2]=-9.6876950045721405e-04 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]= 7.5948275344375283e-03 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-8.9355518766975981e-04 delta[ 3][ 2]= 2.2505969226485102e-03 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]= 2.3017095364300934e-04 delta[ 4][ 2]= 8.8303065415470186e-03 delta[ 4][ 3]=-1.3194774873050760e-03 delta[ 4][ 4]=-4.7686349361696918e-02 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]= 1.1133724138430788e-03 delta[ 6][ 2]=-2.7632161883185936e-03 Component 8: DenseVector "delta[ 7]" with 0 elements: ************************************************** *** Finding Acceptable Trial Point for Iteration 5: ************************************************** --> Starting line search in iteration 5 <-- Acceptable Check: overall_error = 1.1527623040680002e-02 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 1.1527623040680002e-02 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 1.8145491853971407e-04 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 2.6652207192442525e-03 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 2.9895751787428928e+01 last_obj_val = 2.9945312615447051e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 1.6577883162303742e-03 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 5 The current filter has 0 entries. Relative step size for delta_x = 2.474045e-03 minimal step size ALPHA_MIN = 1.287858E-11 Starting checks for alpha (primal) = 1.00e+00 Checking acceptability for trial step size alpha_primal_test= 1.000000e+00: New values of barrier function = 2.9899062868183599e+01 (reference 2.9900084025862331e+01): New values of constraint violation = 8.1739483448473038e-07 (reference 1.8956964213234784e-04): reference_theta = 1.895696e-04 reference_gradBarrTDelta = -7.359879e-03 Checking sufficient reduction... Succeeded... Checking filter acceptability... Succeeded... reference_theta = 1.895696e-04 reference_gradBarrTDelta = -7.359879e-03 Convergence Check: overall_error = 1.7031525384496649e-04 IpData().tol() = 2.4999999999999999e-08 dual_inf = 9.7945439498682563e-07 dual_inf_tol_ = 1.0000000000000000e+00 constr_viol = 0.0000000000000000e+00 constr_viol_tol_ = 1.0000000000000000e-04 compl_inf = 1.7031525384496649e-04 compl_inf_tol_ = 1.0000000000000000e-04 obj val update iter = 6 Acceptable Check: overall_error = 1.7031525384496649e-04 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 9.7945439498682563e-07 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 0.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 1.7031525384496649e-04 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 2.9894810258333436e+01 last_obj_val = 2.9895751787428928e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 3.1494733947324012e-05 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 6 ************************************************** *** Update HessianMatrix for Iteration 6: ************************************************** ************************************************** *** Summary of Iteration: 6: ************************************************** iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 6 2.9894810e+01 0.00e+00 9.79e-07 -3.8 2.48e-03 - 1.00e+00 1.00e+00h 1 ************************************************** *** Beginning Iteration 6 from the following point: ************************************************** Current barrier parameter mu = 1.5042412372345582e-04 Current fraction-to-the-boundary parameter tau = 9.9984957587627654e-01 ||curr_x||_inf = 6.3505357995337863e-01 ||curr_s||_inf = 2.1000367231981269e+01 ||curr_y_c||_inf = 1.8371445066100943e+01 ||curr_y_d||_inf = 5.8051540294747417e-01 ||curr_z_L||_inf = 2.4311320389282012e-01 ||curr_z_U||_inf = 0.0000000000000000e+00 ||curr_v_L||_inf = 5.8051540445171546e-01 ||curr_v_U||_inf = 0.0000000000000000e+00 ||delta_x||_inf = 2.4814919672222031e-03 ||delta_s||_inf = 9.6876950045721405e-04 ||delta_y_c||_inf = 7.5948275344375283e-03 ||delta_y_d||_inf = 2.2505969226485102e-03 ||delta_z_L||_inf = 4.7686349361696918e-02 ||delta_z_U||_inf = 0.0000000000000000e+00 ||delta_v_L||_inf = 2.7632161883185936e-03 ||delta_v_U||_inf = 0.0000000000000000e+00 DenseVector "curr_x" with 4 elements: curr_x[ 1]= 6.3505357995337863e-01 curr_x[ 2]= 5.2859884112717043e-04 curr_x[ 3]= 3.1254460489644970e-01 curr_x[ 4]= 5.1873216309044505e-02 DenseVector "curr_s" with 2 elements: curr_s[ 1]= 2.1000367231981269e+01 curr_s[ 2]= 5.0002636829554321e+00 DenseVector "curr_y_c" with 1 elements: curr_y_c[ 1]=-1.8371445066100943e+01 DenseVector "curr_y_d" with 2 elements: curr_y_d[ 1]=-4.1047075705923086e-01 curr_y_d[ 2]=-5.8051540294747417e-01 DenseVector "curr_slack_x_L" with 4 elements: curr_slack_x_L[ 1]= 6.3505358995337868e-01 curr_slack_x_L[ 2]= 5.2860884112717048e-04 curr_slack_x_L[ 3]= 3.1254461489644969e-01 curr_slack_x_L[ 4]= 5.1873226309044507e-02 DenseVector "curr_slack_x_U" with 0 elements: DenseVector "curr_z_L" with 4 elements: curr_z_L[ 1]= 2.3763878314745076e-04 curr_z_L[ 2]= 2.4311320389282012e-01 curr_z_L[ 3]= 4.7802478773568448e-04 curr_z_L[ 4]= 3.2832978776041674e-03 DenseVector "curr_z_U" with 0 elements: DenseVector "curr_slack_s_L" with 2 elements: curr_slack_s_L[ 1]= 3.6744198126825722e-04 curr_slack_s_L[ 2]= 2.6373295543180575e-04 DenseVector "curr_slack_s_U" with 0 elements: DenseVector "curr_v_L" with 2 elements: curr_v_L[ 1]= 4.1047075856347209e-01 curr_v_L[ 2]= 5.8051540445171546e-01 DenseVector "curr_v_U" with 0 elements: DenseVector "curr_grad_lag_x" with 4 elements: curr_grad_lag_x[ 1]=-5.2847926842975812e-08 curr_grad_lag_x[ 2]= 7.1983771804395857e-08 curr_grad_lag_x[ 3]=-9.7945439498682563e-07 curr_grad_lag_x[ 4]= 4.6278711425540298e-08 DenseVector "curr_grad_lag_s" with 2 elements: curr_grad_lag_s[ 1]=-1.5042412315757758e-09 curr_grad_lag_s[ 2]=-1.5042412870869271e-09 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 2.1255445951882833e-03 delta[ 0][ 2]=-2.4814919672222031e-03 delta[ 0][ 3]= 7.7307156769498603e-04 delta[ 0][ 4]=-4.1712419566106623e-04 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]= 3.5932725767760619e-04 delta[ 1][ 2]=-9.6876950045721405e-04 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]= 7.5948275344375283e-03 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-8.9355518766975981e-04 delta[ 3][ 2]= 2.2505969226485102e-03 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]= 2.3017095364300934e-04 delta[ 4][ 2]= 8.8303065415470186e-03 delta[ 4][ 3]=-1.3194774873050760e-03 delta[ 4][ 4]=-4.7686349361696918e-02 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]= 1.1133724138430788e-03 delta[ 6][ 2]=-2.7632161883185936e-03 Component 8: DenseVector "delta[ 7]" with 0 elements: ***Current NLP Values for Iteration 6: (scaled) (unscaled) Objective...............: 2.9894810258333436e+01 2.9894810258333436e+01 Dual infeasibility......: 9.7945439498682563e-07 9.7945439498682563e-07 Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00 Complementarity.........: 1.7031525384496649e-04 1.7031525384496649e-04 Overall NLP error.......: 1.7031525384496649e-04 1.7031525384496649e-04 DenseVector "grad_f" with 4 elements: grad_f[ 1]= 2.4550000000000001e+01 grad_f[ 2]= 2.6750000000000000e+01 grad_f[ 3]= 3.9000000000000000e+01 grad_f[ 4]= 4.0500000000000000e+01 DenseVector "curr_c" with 1 elements: curr_c[ 1]= 0.0000000000000000e+00 DenseVector "curr_d" with 2 elements: curr_d[ 1]= 2.1000366414586434e+01 curr_d[ 2]= 5.0002636829554321e+00 DenseVector "curr_d - curr_s" with 2 elements: curr_d - curr_s[ 1]=-8.1739483448473038e-07 curr_d - curr_s[ 2]= 0.0000000000000000e+00 GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements: jac_c[ 1, 1]= 1.0000000000000000e+00 (0) jac_c[ 1, 2]= 1.0000000000000000e+00 (1) jac_c[ 1, 3]= 1.0000000000000000e+00 (2) jac_c[ 1, 4]= 1.0000000000000000e+00 (3) GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements: jac_d[ 2, 1]= 2.2999999999999998e+00 (0) jac_d[ 2, 2]= 5.5999999999999996e+00 (1) jac_d[ 2, 3]= 1.1100000000000000e+01 (2) jac_d[ 2, 4]= 1.3000000000000000e+00 (3) jac_d[ 1, 1]= 1.1798969446405131e+01 (4) jac_d[ 1, 2]= 1.1899886453572059e+01 (5) jac_d[ 1, 3]= 3.4556315332840995e+01 (6) jac_d[ 1, 4]= 5.2063639609842539e+01 (7) SymTMatrix "W" of dimension 4 with 10 nonzero elements: W[ 1, 1]= 1.2300676684148731e-01 (0) W[ 2, 1]=-3.9145300507448485e-06 (1) W[ 3, 1]=-2.4972711005946319e-01 (2) W[ 4, 1]=-1.2535298776635646e-03 (3) W[ 2, 2]= 8.8171754162195817e-02 (4) W[ 3, 2]=-1.4105130190736090e-04 (5) W[ 4, 2]=-7.0802093205707388e-07 (6) W[ 3, 3]= 5.1491269957174146e-01 (7) W[ 4, 3]=-4.5168134854547147e-02 (8) W[ 4, 4]= 2.8749163699092989e-01 (9) ************************************************** *** Update Barrier Parameter for Iteration 6: ************************************************** Optimality Error for Barrier Sub-problem = 2.191233e-05 sub_problem_error < kappa_eps * mu (1.504241e-03) Updating mu= 1.5042412372345582e-04 and tau= 9.9984957587627654e-01 to new_mu= 1.8449144625279508e-06 and new_tau= 9.9999815508553747e-01 Barrier Parameter: 1.844914e-06 ************************************************** *** Solving the Primal Dual System for Iteration 6: ************************************************** Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]= 2.3468082173803089e-04 RHS[ 0][ 0][ 2]= 2.3962314421545361e-01 RHS[ 0][ 0][ 3]= 4.7114246825067394e-04 RHS[ 0][ 0][ 4]= 3.2477783425657429e-03 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 4.0544978898862255e-01 RHS[ 0][ 1][ 2]= 5.7352001454543822e-01 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 0.0000000000000000e+00 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]=-8.1739483448473038e-07 RHS[ 0][ 3][ 2]= 0.0000000000000000e+00 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 1.2300676684148731e-01 (0) Term: 0[ 2, 1]=-3.9145300507448485e-06 (1) Term: 0[ 3, 1]=-2.4972711005946319e-01 (2) Term: 0[ 4, 1]=-1.2535298776635646e-03 (3) Term: 0[ 2, 2]= 8.8171754162195817e-02 (4) Term: 0[ 3, 2]=-1.4105130190736090e-04 (5) Term: 0[ 4, 2]=-7.0802093205707388e-07 (6) Term: 0[ 3, 3]= 5.1491269957174146e-01 (7) Term: 0[ 4, 3]=-4.5168134854547147e-02 (8) Term: 0[ 4, 4]= 2.8749163699092989e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 3.7420272384397762e-04 Term: 1[ 2]= 4.5991134649662996e+02 Term: 1[ 3]= 1.5294609631782031e-03 Term: 1[ 4]= 6.3294653354377894e-02 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 1.1171035959111080e+03 KKT[1][1][ 2]= 2.2011485197261254e+03 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (0) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (1) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (2) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (3) KKT[3][0][ 1, 1]= 1.1798969446405131e+01 (4) KKT[3][0][ 1, 2]= 1.1899886453572059e+01 (5) KKT[3][0][ 1, 3]= 3.4556315332840995e+01 (6) KKT[3][0][ 1, 4]= 5.2063639609842539e+01 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 1.230067668414873e-01 (1) KKT[2][1] = -3.914530050744848e-06 (2) KKT[3][1] = -2.497271100594632e-01 (3) KKT[4][1] = -1.253529877663565e-03 (4) KKT[2][2] = 8.817175416219582e-02 (5) KKT[3][2] = -1.410513019073609e-04 (6) KKT[4][2] = -7.080209320570739e-07 (7) KKT[3][3] = 5.149126995717415e-01 (8) KKT[4][3] = -4.516813485454715e-02 (9) KKT[4][4] = 2.874916369909299e-01 (10) KKT[1][1] = 3.742027238439776e-04 (11) KKT[2][2] = 4.599113464966300e+02 (12) KKT[3][3] = 1.529460963178203e-03 (13) KKT[4][4] = 6.329465335437789e-02 (14) KKT[5][5] = 1.117103595911108e+03 (15) KKT[6][6] = 2.201148519726125e+03 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[9][1] = 2.300000000000000e+00 (22) KKT[9][2] = 5.600000000000000e+00 (23) KKT[9][3] = 1.110000000000000e+01 (24) KKT[9][4] = 1.300000000000000e+00 (25) KKT[8][1] = 1.179896944640513e+01 (26) KKT[8][2] = 1.189988645357206e+01 (27) KKT[8][3] = 3.455631533284100e+01 (28) KKT[8][4] = 5.206363960984254e+01 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = 2.3468082173803089e-04 Trhs[ 0, 1] = 2.3962314421545361e-01 Trhs[ 0, 2] = 4.7114246825067394e-04 Trhs[ 0, 3] = 3.2477783425657429e-03 Trhs[ 0, 4] = 4.0544978898862255e-01 Trhs[ 0, 5] = 5.7352001454543822e-01 Trhs[ 0, 6] = 0.0000000000000000e+00 Trhs[ 0, 7] = -8.1739483448473038e-07 Trhs[ 0, 8] = 0.0000000000000000e+00 HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9 Ma97SolverInterface::Factorization: ma97_factor_solve took 0.000 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -4.6173068622021437e-04 Tsol[ 0, 1] = 5.2149040427628334e-04 Tsol[ 0, 2] = -1.5512194474599420e-04 Tsol[ 0, 3] = 9.5362226689925213e-05 Tsol[ 0, 4] = 3.6300949825992189e-04 Tsol[ 0, 5] = 2.6048299365706107e-04 Tsol[ 0, 6] = -2.0213758044480032e-04 Tsol[ 0, 7] = 6.9426867423283412e-05 Tsol[ 0, 8] = -1.5825864336853346e-04 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-4.6173068622021437e-04 SOL[ 0][ 0][ 2]= 5.2149040427628334e-04 SOL[ 0][ 0][ 3]=-1.5512194474599420e-04 SOL[ 0][ 0][ 4]= 9.5362226689925213e-05 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 3.6300949825992189e-04 SOL[ 0][ 1][ 2]= 2.6048299365706107e-04 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-2.0213758044480032e-04 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 6.9426867423283412e-05 SOL[ 0][ 3][ 2]=-1.5825864336853346e-04 Number of trial factorizations performed: 1 Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]=-9.4273970884607658e-15 resid[ 0][ 2]=-4.3079841719818437e-15 resid[ 0][ 3]=-4.6936265705771647e-14 resid[ 0][ 4]= 1.9810906313205011e-14 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]=-3.7269449679189215e-18 resid[ 1][ 2]=-4.2500725161431774e-17 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]=-1.3552527156068805e-20 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]= 2.1684043449710089e-19 resid[ 3][ 2]=-2.1684043449710089e-19 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]= 0.0000000000000000e+00 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 0.0000000000000000e+00 resid[ 6][ 2]= 0.0000000000000000e+00 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 4.693627e-14 max-norm resid_s 4.250073e-17 max-norm resid_c 1.355253e-20 max-norm resid_d 2.168404e-19 max-norm resid_zL 0.000000e+00 max-norm resid_zU 0.000000e+00 max-norm resid_vL 0.000000e+00 max-norm resid_vU 0.000000e+00 nrm_rhs = 1.68e-04 nrm_sol = 3.24e-03 nrm_resid = 4.69e-14 residual_ratio = 1.376363e-11 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-9.4273970884607658e-15 RHS[ 0][ 0][ 2]=-4.3079841719818437e-15 RHS[ 0][ 0][ 3]=-4.6936265705771647e-14 RHS[ 0][ 0][ 4]= 1.9810906313205011e-14 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]=-3.7269449679189215e-18 RHS[ 0][ 1][ 2]=-4.2500725161431774e-17 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]=-1.3552527156068805e-20 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]= 2.1684043449710089e-19 RHS[ 0][ 3][ 2]=-2.1684043449710089e-19 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 1.2300676684148731e-01 (0) Term: 0[ 2, 1]=-3.9145300507448485e-06 (1) Term: 0[ 3, 1]=-2.4972711005946319e-01 (2) Term: 0[ 4, 1]=-1.2535298776635646e-03 (3) Term: 0[ 2, 2]= 8.8171754162195817e-02 (4) Term: 0[ 3, 2]=-1.4105130190736090e-04 (5) Term: 0[ 4, 2]=-7.0802093205707388e-07 (6) Term: 0[ 3, 3]= 5.1491269957174146e-01 (7) Term: 0[ 4, 3]=-4.5168134854547147e-02 (8) Term: 0[ 4, 4]= 2.8749163699092989e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 3.7420272384397762e-04 Term: 1[ 2]= 4.5991134649662996e+02 Term: 1[ 3]= 1.5294609631782031e-03 Term: 1[ 4]= 6.3294653354377894e-02 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 1.1171035959111080e+03 KKT[1][1][ 2]= 2.2011485197261254e+03 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (0) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (1) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (2) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (3) KKT[3][0][ 1, 1]= 1.1798969446405131e+01 (4) KKT[3][0][ 1, 2]= 1.1899886453572059e+01 (5) KKT[3][0][ 1, 3]= 3.4556315332840995e+01 (6) KKT[3][0][ 1, 4]= 5.2063639609842539e+01 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 1.230067668414873e-01 (1) KKT[2][1] = -3.914530050744848e-06 (2) KKT[3][1] = -2.497271100594632e-01 (3) KKT[4][1] = -1.253529877663565e-03 (4) KKT[2][2] = 8.817175416219582e-02 (5) KKT[3][2] = -1.410513019073609e-04 (6) KKT[4][2] = -7.080209320570739e-07 (7) KKT[3][3] = 5.149126995717415e-01 (8) KKT[4][3] = -4.516813485454715e-02 (9) KKT[4][4] = 2.874916369909299e-01 (10) KKT[1][1] = 3.742027238439776e-04 (11) KKT[2][2] = 4.599113464966300e+02 (12) KKT[3][3] = 1.529460963178203e-03 (13) KKT[4][4] = 6.329465335437789e-02 (14) KKT[5][5] = 1.117103595911108e+03 (15) KKT[6][6] = 2.201148519726125e+03 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[9][1] = 2.300000000000000e+00 (22) KKT[9][2] = 5.600000000000000e+00 (23) KKT[9][3] = 1.110000000000000e+01 (24) KKT[9][4] = 1.300000000000000e+00 (25) KKT[8][1] = 1.179896944640513e+01 (26) KKT[8][2] = 1.189988645357206e+01 (27) KKT[8][3] = 3.455631533284100e+01 (28) KKT[8][4] = 5.206363960984254e+01 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -9.4273970884607658e-15 Trhs[ 0, 1] = -4.3079841719818437e-15 Trhs[ 0, 2] = -4.6936265705771647e-14 Trhs[ 0, 3] = 1.9810906313205011e-14 Trhs[ 0, 4] = -3.7269449679189215e-18 Trhs[ 0, 5] = -4.2500725161431774e-17 Trhs[ 0, 6] = -1.3552527156068805e-20 Trhs[ 0, 7] = 2.1684043449710089e-19 Trhs[ 0, 8] = -2.1684043449710089e-19 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -4.4131250339707737e-17 Tsol[ 0, 1] = 5.2389796139042337e-17 Tsol[ 0, 2] = -1.8773933549137465e-17 Tsol[ 0, 3] = 1.0501835222643223e-17 Tsol[ 0, 4] = 5.1830706787714044e-19 Tsol[ 0, 5] = -2.6404535741918507e-18 Tsol[ 0, 6] = -3.0323178456358384e-15 Tsol[ 0, 7] = 5.8272963427961515e-16 Tsol[ 0, 8] = -5.7695297510765172e-15 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-4.4131250339707737e-17 SOL[ 0][ 0][ 2]= 5.2389796139042337e-17 SOL[ 0][ 0][ 3]=-1.8773933549137465e-17 SOL[ 0][ 0][ 4]= 1.0501835222643223e-17 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 5.1830706787714044e-19 SOL[ 0][ 1][ 2]=-2.6404535741918507e-18 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-3.0323178456358384e-15 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 5.8272963427961515e-16 SOL[ 0][ 3][ 2]=-5.7695297510765172e-15 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]=-1.5253210495477830e-20 resid[ 0][ 2]= 9.3160389308172189e-20 resid[ 0][ 3]=-1.5246593050577406e-20 resid[ 0][ 4]=-6.9463319119753052e-20 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 0.0000000000000000e+00 resid[ 1][ 2]= 0.0000000000000000e+00 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]= 2.7105054312137611e-20 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]= 7.5894152073985310e-19 resid[ 3][ 2]= 1.6263032587282567e-19 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 2.7105054312137611e-20 resid[ 4][ 2]=-2.7263872989747792e-21 resid[ 4][ 3]=-2.7105054312137611e-20 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]=-3.1194635260599780e-20 resid[ 6][ 2]= 1.2162863726979719e-20 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 9.316039e-20 max-norm resid_s 0.000000e+00 max-norm resid_c 2.710505e-20 max-norm resid_d 7.589415e-19 max-norm resid_zL 2.710505e-20 max-norm resid_zU 0.000000e+00 max-norm resid_vL 3.119464e-20 max-norm resid_vU 0.000000e+00 nrm_rhs = 1.68e-04 nrm_sol = 3.24e-03 nrm_resid = 7.59e-19 residual_ratio = 2.225526e-16 *** Step Calculated for Iteration: 6 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 4.6173068622017025e-04 delta[ 0][ 2]=-5.2149040427623098e-04 delta[ 0][ 3]= 1.5512194474597541e-04 delta[ 0][ 4]=-9.5362226689914710e-05 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-3.6300949825992135e-04 delta[ 1][ 2]=-2.6048299365706373e-04 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]= 2.0213758044176799e-04 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-6.9426867422700680e-05 delta[ 3][ 2]= 1.5825864336276393e-04 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]=-2.3490643209619517e-04 delta[ 4][ 2]= 2.1628180252061319e-04 delta[ 4][ 3]=-4.7235915715553733e-04 delta[ 4][ 4]=-3.2416961263237332e-03 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]= 6.9425381630613728e-05 delta[ 6][ 2]=-1.5826012915490638e-04 Component 8: DenseVector "delta[ 7]" with 0 elements: ************************************************** *** Finding Acceptable Trial Point for Iteration 6: ************************************************** --> Starting line search in iteration 6 <-- Mu has changed in line search - resetting watchdog counters. Acceptable Check: overall_error = 1.7031525384496649e-04 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 9.7945439498682563e-07 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 0.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 1.7031525384496649e-04 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 2.9894810258333436e+01 last_obj_val = 2.9895751787428928e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 3.1494733947324012e-05 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 6 The current filter has 0 entries. Relative step size for delta_x = 5.212149e-04 minimal step size ALPHA_MIN = 9.700214E-13 Starting checks for alpha (primal) = 1.00e+00 Checking acceptability for trial step size alpha_primal_test= 1.000000e+00: New values of barrier function = 2.9894459830341511e+01 (reference 2.9894862415535499e+01): New values of constraint violation = 3.7627721383159951e-08 (reference 8.1739483448473038e-07): reference_theta = 8.173948e-07 reference_gradBarrTDelta = -4.213283e-04 Checking sufficient reduction... Succeeded... Checking filter acceptability... Succeeded... reference_theta = 8.173948e-07 reference_gradBarrTDelta = -4.213283e-04 Convergence Check: overall_error = 2.1540498233862424e-06 IpData().tol() = 2.4999999999999999e-08 dual_inf = 3.6266234808475257e-08 dual_inf_tol_ = 1.0000000000000000e+00 constr_viol = 0.0000000000000000e+00 constr_viol_tol_ = 1.0000000000000000e-04 compl_inf = 2.1540498233862424e-06 compl_inf_tol_ = 1.0000000000000000e-04 obj val update iter = 7 Acceptable Check: overall_error = 2.1540498233862424e-06 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 3.6266234808475257e-08 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 0.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 2.1540498233862424e-06 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 2.9894383464029904e+01 last_obj_val = 2.9894810258333436e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 1.4276738774220053e-05 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 7 ************************************************** *** Update HessianMatrix for Iteration 7: ************************************************** ************************************************** *** Summary of Iteration: 7: ************************************************** iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 7 2.9894383e+01 0.00e+00 3.63e-08 -5.7 5.21e-04 - 1.00e+00 1.00e+00h 1 A ************************************************** *** Beginning Iteration 7 from the following point: ************************************************** Current barrier parameter mu = 1.8449144625279508e-06 Current fraction-to-the-boundary parameter tau = 9.9999815508553747e-01 ||curr_x||_inf = 6.3551531063959876e-01 ||curr_s||_inf = 2.1000004222483010e+01 ||curr_y_c||_inf = 1.8371242928520502e+01 ||curr_y_d||_inf = 5.8035714430411145e-01 ||curr_z_L||_inf = 2.4332948569534074e-01 ||curr_z_U||_inf = 0.0000000000000000e+00 ||curr_v_L||_inf = 5.8035714432256058e-01 ||curr_v_U||_inf = 0.0000000000000000e+00 ||delta_x||_inf = 5.2149040427623098e-04 ||delta_s||_inf = 3.6300949825992135e-04 ||delta_y_c||_inf = 2.0213758044176799e-04 ||delta_y_d||_inf = 1.5825864336276393e-04 ||delta_z_L||_inf = 3.2416961263237332e-03 ||delta_z_U||_inf = 0.0000000000000000e+00 ||delta_v_L||_inf = 1.5826012915490638e-04 ||delta_v_U||_inf = 0.0000000000000000e+00 DenseVector "curr_x" with 4 elements: curr_x[ 1]= 6.3551531063959876e-01 curr_x[ 2]= 7.1084368509394561e-06 curr_x[ 3]= 3.1269972684119568e-01 curr_x[ 4]= 5.1777854082354594e-02 DenseVector "curr_s" with 2 elements: curr_s[ 1]= 2.1000004222483010e+01 curr_s[ 2]= 5.0000031999617747e+00 DenseVector "curr_y_c" with 1 elements: curr_y_c[ 1]=-1.8371242928520502e+01 DenseVector "curr_y_d" with 2 elements: curr_y_d[ 1]=-4.1054018392665359e-01 curr_y_d[ 2]=-5.8035714430411145e-01 DenseVector "curr_slack_x_L" with 4 elements: curr_slack_x_L[ 1]= 6.3551532063959881e-01 curr_slack_x_L[ 2]= 7.1184368509394561e-06 curr_slack_x_L[ 3]= 3.1269973684119567e-01 curr_slack_x_L[ 4]= 5.1777864082354595e-02 DenseVector "curr_slack_x_U" with 0 elements: DenseVector "curr_z_L" with 4 elements: curr_z_L[ 1]= 2.7323510512555836e-06 curr_z_L[ 2]= 2.4332948569534074e-01 curr_z_L[ 3]= 5.6656305801471474e-06 curr_z_L[ 4]= 4.1601751280434182e-05 DenseVector "curr_z_U" with 0 elements: DenseVector "curr_slack_s_L" with 2 elements: curr_slack_s_L[ 1]= 4.4324830099640167e-06 curr_slack_s_L[ 2]= 3.2499617743653175e-06 DenseVector "curr_slack_s_U" with 0 elements: DenseVector "curr_v_L" with 2 elements: curr_v_L[ 1]= 4.1054018394510272e-01 curr_v_L[ 2]= 5.8035714432256058e-01 DenseVector "curr_v_U" with 0 elements: DenseVector "curr_grad_lag_x" with 4 elements: curr_grad_lag_x[ 1]=-7.4502094005233881e-09 curr_grad_lag_x[ 2]= 1.5505804862314676e-08 curr_grad_lag_x[ 3]=-3.6266234808475257e-08 curr_grad_lag_x[ 4]= 1.1558658802660049e-08 DenseVector "curr_grad_lag_s" with 2 elements: curr_grad_lag_s[ 1]=-1.8449131111708539e-11 curr_grad_lag_s[ 2]=-1.8449131111708539e-11 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 4.6173068622017025e-04 delta[ 0][ 2]=-5.2149040427623098e-04 delta[ 0][ 3]= 1.5512194474597541e-04 delta[ 0][ 4]=-9.5362226689914710e-05 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-3.6300949825992135e-04 delta[ 1][ 2]=-2.6048299365706373e-04 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]= 2.0213758044176799e-04 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-6.9426867422700680e-05 delta[ 3][ 2]= 1.5825864336276393e-04 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]=-2.3490643209619517e-04 delta[ 4][ 2]= 2.1628180252061319e-04 delta[ 4][ 3]=-4.7235915715553733e-04 delta[ 4][ 4]=-3.2416961263237332e-03 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]= 6.9425381630613728e-05 delta[ 6][ 2]=-1.5826012915490638e-04 Component 8: DenseVector "delta[ 7]" with 0 elements: ***Current NLP Values for Iteration 7: (scaled) (unscaled) Objective...............: 2.9894383464029904e+01 2.9894383464029904e+01 Dual infeasibility......: 3.6266234808475257e-08 3.6266234808475257e-08 Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00 Complementarity.........: 2.1540498233862424e-06 2.1540498233862424e-06 Overall NLP error.......: 2.1540498233862424e-06 2.1540498233862424e-06 DenseVector "grad_f" with 4 elements: grad_f[ 1]= 2.4550000000000001e+01 grad_f[ 2]= 2.6750000000000000e+01 grad_f[ 3]= 3.9000000000000000e+01 grad_f[ 4]= 4.0500000000000000e+01 DenseVector "curr_c" with 1 elements: curr_c[ 1]= 0.0000000000000000e+00 DenseVector "curr_d" with 2 elements: curr_d[ 1]= 2.1000004184855289e+01 curr_d[ 2]= 5.0000031999617747e+00 DenseVector "curr_d - curr_s" with 2 elements: curr_d - curr_s[ 1]=-3.7627721383159951e-08 curr_d - curr_s[ 2]= 0.0000000000000000e+00 GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements: jac_c[ 1, 1]= 1.0000000000000000e+00 (0) jac_c[ 1, 2]= 1.0000000000000000e+00 (1) jac_c[ 1, 3]= 1.0000000000000000e+00 (2) jac_c[ 1, 4]= 1.0000000000000000e+00 (3) GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements: jac_d[ 2, 1]= 2.2999999999999998e+00 (0) jac_d[ 2, 2]= 5.5999999999999996e+00 (1) jac_d[ 2, 3]= 1.1100000000000000e+01 (2) jac_d[ 2, 4]= 1.3000000000000000e+00 (3) jac_d[ 1, 1]= 1.1798925182789434e+01 (4) jac_d[ 1, 2]= 1.1899998473835513e+01 (5) jac_d[ 1, 3]= 3.4556391056896160e+01 (6) jac_d[ 1, 4]= 5.2063724837208390e+01 (7) SymTMatrix "W" of dimension 4 with 10 nonzero elements: W[ 1, 1]= 1.2296220471794006e-01 (0) W[ 2, 1]=-5.2608573728668323e-08 (1) W[ 3, 1]=-2.4969519213810940e-01 (2) W[ 4, 1]=-1.2504448837915190e-03 (3) W[ 2, 2]= 8.8142001240504794e-02 (4) W[ 3, 2]=-1.8951947361257652e-06 (5) W[ 4, 2]=-9.4909178718439092e-09 (6) W[ 3, 3]= 5.1492700270553149e-01 (7) W[ 4, 3]=-4.5046584493996095e-02 (8) W[ 4, 4]= 2.8739567907856889e-01 (9) ************************************************** *** Update Barrier Parameter for Iteration 7: ************************************************** Optimality Error for Barrier Sub-problem = 3.091354e-07 sub_problem_error < kappa_eps * mu (1.844914e-05) Updating mu= 1.8449144625279508e-06 and tau= 9.9999815508553747e-01 to new_mu= 2.5059035596800618e-09 and new_tau= 9.9999999749409640e-01 Barrier Parameter: 2.505904e-09 ************************************************** *** Solving the Primal Dual System for Iteration 7: ************************************************** Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]= 2.7209577620379489e-06 RHS[ 0][ 0][ 2]= 2.4297747116815166e-01 RHS[ 0][ 0][ 3]= 5.6213506010706399e-06 RHS[ 0][ 0][ 4]= 4.1564912765916002e-05 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 4.0997483408686042e-01 RHS[ 0][ 1][ 2]= 5.7958608798604505e-01 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 0.0000000000000000e+00 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]=-3.7627721383159951e-08 RHS[ 0][ 3][ 2]= 0.0000000000000000e+00 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 1.2296220471794006e-01 (0) Term: 0[ 2, 1]=-5.2608573728668323e-08 (1) Term: 0[ 3, 1]=-2.4969519213810940e-01 (2) Term: 0[ 4, 1]=-1.2504448837915190e-03 (3) Term: 0[ 2, 2]= 8.8142001240504794e-02 (4) Term: 0[ 3, 2]=-1.8951947361257652e-06 (5) Term: 0[ 4, 2]=-9.4909178718439092e-09 (6) Term: 0[ 3, 3]= 5.1492700270553149e-01 (7) Term: 0[ 4, 3]=-4.5046584493996095e-02 (8) Term: 0[ 4, 4]= 2.8739567907856889e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 4.2994259343829446e-06 Term: 1[ 2]= 3.4182994214976752e+04 Term: 1[ 3]= 1.8118437314273896e-05 Term: 1[ 4]= 8.0346596016909989e-04 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 9.2620813891948914e+04 KKT[1][1][ 2]= 1.7857352935663314e+05 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (0) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (1) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (2) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (3) KKT[3][0][ 1, 1]= 1.1798925182789434e+01 (4) KKT[3][0][ 1, 2]= 1.1899998473835513e+01 (5) KKT[3][0][ 1, 3]= 3.4556391056896160e+01 (6) KKT[3][0][ 1, 4]= 5.2063724837208390e+01 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 1.229622047179401e-01 (1) KKT[2][1] = -5.260857372866832e-08 (2) KKT[3][1] = -2.496951921381094e-01 (3) KKT[4][1] = -1.250444883791519e-03 (4) KKT[2][2] = 8.814200124050479e-02 (5) KKT[3][2] = -1.895194736125765e-06 (6) KKT[4][2] = -9.490917871843909e-09 (7) KKT[3][3] = 5.149270027055315e-01 (8) KKT[4][3] = -4.504658449399609e-02 (9) KKT[4][4] = 2.873956790785689e-01 (10) KKT[1][1] = 4.299425934382945e-06 (11) KKT[2][2] = 3.418299421497675e+04 (12) KKT[3][3] = 1.811843731427390e-05 (13) KKT[4][4] = 8.034659601690999e-04 (14) KKT[5][5] = 9.262081389194891e+04 (15) KKT[6][6] = 1.785735293566331e+05 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[9][1] = 2.300000000000000e+00 (22) KKT[9][2] = 5.600000000000000e+00 (23) KKT[9][3] = 1.110000000000000e+01 (24) KKT[9][4] = 1.300000000000000e+00 (25) KKT[8][1] = 1.179892518278943e+01 (26) KKT[8][2] = 1.189999847383551e+01 (27) KKT[8][3] = 3.455639105689616e+01 (28) KKT[8][4] = 5.206372483720839e+01 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = 2.7209577620379489e-06 Trhs[ 0, 1] = 2.4297747116815166e-01 Trhs[ 0, 2] = 5.6213506010706399e-06 Trhs[ 0, 3] = 4.1564912765916002e-05 Trhs[ 0, 4] = 4.0997483408686042e-01 Trhs[ 0, 5] = 5.7958608798604505e-01 Trhs[ 0, 6] = 0.0000000000000000e+00 Trhs[ 0, 7] = -3.7627721383159951e-08 Trhs[ 0, 8] = 0.0000000000000000e+00 HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9 Ma97SolverInterface::Factorization: ma97_factor_solve took 0.000 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -6.2652408420053857e-06 Tsol[ 0, 1] = 7.1082302230758798e-06 Tsol[ 0, 2] = -2.1484200753485478e-06 Tsol[ 0, 3] = 1.3054306942780542e-06 Tsol[ 0, 4] = 4.4263887633871725e-06 Tsol[ 0, 5] = 3.2456323788051284e-06 Tsol[ 0, 6] = -2.8767390109979545e-06 Tsol[ 0, 7] = 8.9578023676484264e-07 Tsol[ 0, 8] = -2.0591086484500476e-06 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-6.2652408420053857e-06 SOL[ 0][ 0][ 2]= 7.1082302230758798e-06 SOL[ 0][ 0][ 3]=-2.1484200753485478e-06 SOL[ 0][ 0][ 4]= 1.3054306942780542e-06 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 4.4263887633871725e-06 SOL[ 0][ 1][ 2]= 3.2456323788051284e-06 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-2.8767390109979545e-06 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 8.9578023676484264e-07 SOL[ 0][ 3][ 2]=-2.0591086484500476e-06 Number of trial factorizations performed: 1 Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]=-1.4201186214612178e-14 resid[ 0][ 2]= 8.1619269370434726e-15 resid[ 0][ 3]=-3.2860558862630216e-14 resid[ 0][ 4]= 8.9791595711474722e-15 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 7.1205824710932758e-18 resid[ 1][ 2]= 8.4275543087066612e-17 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]= 4.2351647362715017e-22 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]=-6.7762635780344027e-21 resid[ 3][ 2]= 8.4703294725430034e-22 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]=-2.1175823681357508e-22 resid[ 4][ 2]= 0.0000000000000000e+00 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 0.0000000000000000e+00 resid[ 6][ 2]= 0.0000000000000000e+00 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 3.286056e-14 max-norm resid_s 8.427554e-17 max-norm resid_c 4.235165e-22 max-norm resid_d 6.776264e-21 max-norm resid_zL 2.117582e-22 max-norm resid_zU 0.000000e+00 max-norm resid_vL 0.000000e+00 max-norm resid_vU 0.000000e+00 nrm_rhs = 2.15e-06 nrm_sol = 4.16e-05 nrm_resid = 3.29e-14 residual_ratio = 7.518916e-10 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-1.4201186547819309e-14 RHS[ 0][ 0][ 2]= 8.1619269370434726e-15 RHS[ 0][ 0][ 3]=-3.2860558862630216e-14 RHS[ 0][ 0][ 4]= 8.9791595711474722e-15 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 7.1205824710932758e-18 RHS[ 0][ 1][ 2]= 8.4275543087066612e-17 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 4.2351647362715017e-22 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]=-6.7762635780344027e-21 RHS[ 0][ 3][ 2]= 8.4703294725430034e-22 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 1.2296220471794006e-01 (0) Term: 0[ 2, 1]=-5.2608573728668323e-08 (1) Term: 0[ 3, 1]=-2.4969519213810940e-01 (2) Term: 0[ 4, 1]=-1.2504448837915190e-03 (3) Term: 0[ 2, 2]= 8.8142001240504794e-02 (4) Term: 0[ 3, 2]=-1.8951947361257652e-06 (5) Term: 0[ 4, 2]=-9.4909178718439092e-09 (6) Term: 0[ 3, 3]= 5.1492700270553149e-01 (7) Term: 0[ 4, 3]=-4.5046584493996095e-02 (8) Term: 0[ 4, 4]= 2.8739567907856889e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 4.2994259343829446e-06 Term: 1[ 2]= 3.4182994214976752e+04 Term: 1[ 3]= 1.8118437314273896e-05 Term: 1[ 4]= 8.0346596016909989e-04 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 9.2620813891948914e+04 KKT[1][1][ 2]= 1.7857352935663314e+05 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (0) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (1) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (2) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (3) KKT[3][0][ 1, 1]= 1.1798925182789434e+01 (4) KKT[3][0][ 1, 2]= 1.1899998473835513e+01 (5) KKT[3][0][ 1, 3]= 3.4556391056896160e+01 (6) KKT[3][0][ 1, 4]= 5.2063724837208390e+01 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 1.229622047179401e-01 (1) KKT[2][1] = -5.260857372866832e-08 (2) KKT[3][1] = -2.496951921381094e-01 (3) KKT[4][1] = -1.250444883791519e-03 (4) KKT[2][2] = 8.814200124050479e-02 (5) KKT[3][2] = -1.895194736125765e-06 (6) KKT[4][2] = -9.490917871843909e-09 (7) KKT[3][3] = 5.149270027055315e-01 (8) KKT[4][3] = -4.504658449399609e-02 (9) KKT[4][4] = 2.873956790785689e-01 (10) KKT[1][1] = 4.299425934382945e-06 (11) KKT[2][2] = 3.418299421497675e+04 (12) KKT[3][3] = 1.811843731427390e-05 (13) KKT[4][4] = 8.034659601690999e-04 (14) KKT[5][5] = 9.262081389194891e+04 (15) KKT[6][6] = 1.785735293566331e+05 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[9][1] = 2.300000000000000e+00 (22) KKT[9][2] = 5.600000000000000e+00 (23) KKT[9][3] = 1.110000000000000e+01 (24) KKT[9][4] = 1.300000000000000e+00 (25) KKT[8][1] = 1.179892518278943e+01 (26) KKT[8][2] = 1.189999847383551e+01 (27) KKT[8][3] = 3.455639105689616e+01 (28) KKT[8][4] = 5.206372483720839e+01 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -1.4201186547819309e-14 Trhs[ 0, 1] = 8.1619269370434726e-15 Trhs[ 0, 2] = -3.2860558862630216e-14 Trhs[ 0, 3] = 8.9791595711474722e-15 Trhs[ 0, 4] = 7.1205824710932758e-18 Trhs[ 0, 5] = 8.4275543087066612e-17 Trhs[ 0, 6] = 4.2351647362715017e-22 Trhs[ 0, 7] = -6.7762635780344027e-21 Trhs[ 0, 8] = 8.4703294725430034e-22 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -8.2595896071160091e-19 Tsol[ 0, 1] = 9.8016090958470327e-19 Tsol[ 0, 2] = -3.4764856727686350e-19 Tsol[ 0, 3] = 1.9387013487642178e-19 Tsol[ 0, 4] = 5.3831254280682114e-21 Tsol[ 0, 5] = -1.8519470343360740e-20 Tsol[ 0, 6] = -1.2199841777877931e-14 Tsol[ 0, 7] = 4.9146887595903041e-16 Tsol[ 0, 8] = -3.3913627241164926e-15 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-8.2595896071160091e-19 SOL[ 0][ 0][ 2]= 9.8016090958470327e-19 SOL[ 0][ 0][ 3]=-3.4764856727686350e-19 SOL[ 0][ 0][ 4]= 1.9387013487642178e-19 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 5.3831254280682114e-21 SOL[ 0][ 1][ 2]=-1.8519470343360740e-20 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-1.2199841777877931e-14 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 4.9146887595903041e-16 SOL[ 0][ 3][ 2]=-3.3913627241164926e-15 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]= 1.7370792863613581e-21 resid[ 0][ 2]= 3.0076287072428086e-21 resid[ 0][ 3]= 3.0109374296930207e-21 resid[ 0][ 4]= 4.6652986547990761e-22 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 0.0000000000000000e+00 resid[ 1][ 2]= 0.0000000000000000e+00 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]= 0.0000000000000000e+00 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]=-1.6940658945086007e-21 resid[ 3][ 2]=-2.1175823681357508e-21 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 2.1175823681357508e-22 resid[ 4][ 2]=-1.4948381515054968e-22 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 9.2406737297256883e-23 resid[ 6][ 2]= 5.1763411769919935e-23 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 3.010937e-21 max-norm resid_s 0.000000e+00 max-norm resid_c 0.000000e+00 max-norm resid_d 2.117582e-21 max-norm resid_zL 2.117582e-22 max-norm resid_zU 0.000000e+00 max-norm resid_vL 9.240674e-23 max-norm resid_vU 0.000000e+00 nrm_rhs = 2.15e-06 nrm_sol = 4.16e-05 nrm_resid = 3.01e-21 residual_ratio = 6.889410e-17 *** Step Calculated for Iteration: 7 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 6.2652408420045599e-06 delta[ 0][ 2]=-7.1082302230748998e-06 delta[ 0][ 3]= 2.1484200753482001e-06 delta[ 0][ 4]=-1.3054306942778603e-06 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-4.4263887633871674e-06 delta[ 1][ 2]=-3.2456323788051470e-06 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]= 2.8767389987981127e-06 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-8.9578023627337380e-07 delta[ 3][ 2]= 2.0591086450586848e-06 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]=-2.7284348833183980e-06 delta[ 4][ 2]= 3.1369317704728081e-06 delta[ 4][ 3]=-5.6576557368345396e-06 delta[ 4][ 4]=-4.1552305212928097e-05 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]= 8.9576181220129773e-07 delta[ 6][ 2]=-2.0591270691307609e-06 Component 8: DenseVector "delta[ 7]" with 0 elements: ************************************************** *** Finding Acceptable Trial Point for Iteration 7: ************************************************** --> Starting line search in iteration 7 <-- Mu has changed in line search - resetting watchdog counters. Acceptable Check: overall_error = 2.1540498233862424e-06 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 3.6266234808475257e-08 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 0.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 2.1540498233862424e-06 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 2.9894383464029904e+01 last_obj_val = 2.9894810258333436e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 1.4276738774220053e-05 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 7 Storing current iterate as backup acceptable point. The current filter has 0 entries. Relative step size for delta_x = 7.108180e-06 minimal step size ALPHA_MIN = 3.479185E-12 Starting checks for alpha (primal) = 1.00e+00 Checking acceptability for trial step size alpha_primal_test= 1.000000e+00: New values of barrier function = 2.9894378202211513e+01 (reference 2.9894383567756453e+01): New values of constraint violation = 6.9393379931170784e-12 (reference 3.7627721383159951e-08): reference_theta = 3.762772e-08 reference_gradBarrTDelta = -5.407549e-06 Checking sufficient reduction... Succeeded... Checking filter acceptability... Succeeded... reference_theta = 3.762772e-08 reference_gradBarrTDelta = -5.407549e-06 Convergence Check: overall_error = 2.5601472143227907e-09 IpData().tol() = 2.4999999999999999e-08 dual_inf = 6.7175978109862574e-12 dual_inf_tol_ = 1.0000000000000000e+00 constr_viol = 0.0000000000000000e+00 constr_viol_tol_ = 1.0000000000000000e-04 compl_inf = 2.5601472143227907e-09 compl_inf_tol_ = 1.0000000000000000e-04 ************************************************** *** Summary of Iteration: 8: ************************************************** iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 8 2.9894378e+01 0.00e+00 6.72e-12 -8.6 7.11e-06 - 1.00e+00 1.00e+00h 1 ************************************************** *** Beginning Iteration 8 from the following point: ************************************************** Current barrier parameter mu = 2.5059035596800618e-09 Current fraction-to-the-boundary parameter tau = 9.9999999749409640e-01 ||curr_x||_inf = 6.3552157588044078e-01 ||curr_s||_inf = 2.0999999796094247e+01 ||curr_y_c||_inf = 1.8371240051781502e+01 ||curr_y_d||_inf = 5.8035508519546641e-01 ||curr_z_L||_inf = 2.4333262262711122e-01 ||curr_z_U||_inf = 0.0000000000000000e+00 ||curr_v_L||_inf = 5.8035508519549150e-01 ||curr_v_U||_inf = 0.0000000000000000e+00 ||delta_x||_inf = 7.1082302230748998e-06 ||delta_s||_inf = 4.4263887633871674e-06 ||delta_y_c||_inf = 2.8767389987981127e-06 ||delta_y_d||_inf = 2.0591086450586848e-06 ||delta_z_L||_inf = 4.1552305212928097e-05 ||delta_z_U||_inf = 0.0000000000000000e+00 ||delta_v_L||_inf = 2.0591270691307609e-06 ||delta_v_U||_inf = 0.0000000000000000e+00 DenseVector "curr_x" with 4 elements: curr_x[ 1]= 6.3552157588044078e-01 curr_x[ 2]= 2.0662786455638473e-10 curr_x[ 3]= 3.1270187526127102e-01 curr_x[ 4]= 5.1776548651660315e-02 DenseVector "curr_s" with 2 elements: curr_s[ 1]= 2.0999999796094247e+01 curr_s[ 2]= 4.9999999543293958e+00 DenseVector "curr_y_c" with 1 elements: curr_y_c[ 1]=-1.8371240051781502e+01 DenseVector "curr_y_d" with 2 elements: curr_y_d[ 1]=-4.1054107970688986e-01 curr_y_d[ 2]=-5.8035508519546641e-01 DenseVector "curr_slack_x_L" with 4 elements: curr_slack_x_L[ 1]= 6.3552158588044083e-01 curr_slack_x_L[ 2]= 1.0206627864556385e-08 curr_slack_x_L[ 3]= 3.1270188526127102e-01 curr_slack_x_L[ 4]= 5.1776558651660316e-02 DenseVector "curr_slack_x_U" with 0 elements: DenseVector "curr_z_L" with 4 elements: curr_z_L[ 1]= 3.9161679371855925e-09 curr_z_L[ 2]= 2.4333262262711122e-01 curr_z_L[ 3]= 7.9748433126077562e-09 curr_z_L[ 4]= 4.9446067506085493e-08 DenseVector "curr_z_U" with 0 elements: DenseVector "curr_slack_s_L" with 2 elements: curr_slack_s_L[ 1]= 6.0942468849134457e-09 curr_slack_s_L[ 2]= 4.3293955087619906e-09 DenseVector "curr_slack_s_U" with 0 elements: DenseVector "curr_v_L" with 2 elements: curr_v_L[ 1]= 4.1054107970691495e-01 curr_v_L[ 2]= 5.8035508519549150e-01 DenseVector "curr_v_U" with 0 elements: DenseVector "curr_grad_lag_x" with 4 elements: curr_grad_lag_x[ 1]=-1.3972073785324917e-12 curr_grad_lag_x[ 2]= 2.9985736116344697e-12 curr_grad_lag_x[ 3]=-6.7175978109862574e-12 curr_grad_lag_x[ 4]= 2.2499346068421792e-12 DenseVector "curr_grad_lag_s" with 2 elements: curr_grad_lag_s[ 1]=-2.5091040356528538e-14 curr_grad_lag_s[ 2]=-2.5091040356528538e-14 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 6.2652408420045599e-06 delta[ 0][ 2]=-7.1082302230748998e-06 delta[ 0][ 3]= 2.1484200753482001e-06 delta[ 0][ 4]=-1.3054306942778603e-06 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-4.4263887633871674e-06 delta[ 1][ 2]=-3.2456323788051470e-06 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]= 2.8767389987981127e-06 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-8.9578023627337380e-07 delta[ 3][ 2]= 2.0591086450586848e-06 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]=-2.7284348833183980e-06 delta[ 4][ 2]= 3.1369317704728081e-06 delta[ 4][ 3]=-5.6576557368345396e-06 delta[ 4][ 4]=-4.1552305212928097e-05 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]= 8.9576181220129773e-07 delta[ 6][ 2]=-2.0591270691307609e-06 Component 8: DenseVector "delta[ 7]" with 0 elements: ***Current NLP Values for Iteration 8: (scaled) (unscaled) Objective...............: 2.9894378048973934e+01 2.9894378048973934e+01 Dual infeasibility......: 6.7175978109862574e-12 6.7175978109862574e-12 Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00 Complementarity.........: 2.5601472143227907e-09 2.5601472143227907e-09 Overall NLP error.......: 2.5601472143227907e-09 2.5601472143227907e-09 DenseVector "grad_f" with 4 elements: grad_f[ 1]= 2.4550000000000001e+01 grad_f[ 2]= 2.6750000000000000e+01 grad_f[ 3]= 3.9000000000000000e+01 grad_f[ 4]= 4.0500000000000000e+01 DenseVector "curr_c" with 1 elements: curr_c[ 1]= 0.0000000000000000e+00 DenseVector "curr_d" with 2 elements: curr_d[ 1]= 2.0999999796087309e+01 curr_d[ 2]= 4.9999999543293967e+00 DenseVector "curr_d - curr_s" with 2 elements: curr_d - curr_s[ 1]=-6.9384498146973783e-12 curr_d - curr_s[ 2]= 8.8817841970012523e-16 GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements: jac_c[ 1, 1]= 1.0000000000000000e+00 (0) jac_c[ 1, 2]= 1.0000000000000000e+00 (1) jac_c[ 1, 3]= 1.0000000000000000e+00 (2) jac_c[ 1, 4]= 1.0000000000000000e+00 (3) GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements: jac_d[ 2, 1]= 2.2999999999999998e+00 (0) jac_d[ 2, 2]= 5.5999999999999996e+00 (1) jac_d[ 2, 3]= 1.1100000000000000e+01 (2) jac_d[ 2, 4]= 1.3000000000000000e+00 (3) jac_d[ 1, 1]= 1.1798924608988067e+01 (4) jac_d[ 1, 2]= 1.1899999999955638e+01 (5) jac_d[ 1, 3]= 3.4556392029537029e+01 (6) jac_d[ 1, 4]= 5.2063726005876163e+01 (7) SymTMatrix "W" of dimension 4 with 10 nonzero elements: W[ 1, 1]= 1.2296220471794006e-01 (0) W[ 2, 1]=-5.2608573728668323e-08 (1) W[ 3, 1]=-2.4969519213810940e-01 (2) W[ 4, 1]=-1.2504448837915190e-03 (3) W[ 2, 2]= 8.8142001240504794e-02 (4) W[ 3, 2]=-1.8951947361257652e-06 (5) W[ 4, 2]=-9.4909178718439092e-09 (6) W[ 3, 3]= 5.1492700270553149e-01 (7) W[ 4, 3]=-4.5046584493996095e-02 (8) W[ 4, 4]= 2.8739567907856889e-01 (9) Number of Iterations....: 8 (scaled) (unscaled) Objective...............: 2.9894378048973934e+01 2.9894378048973934e+01 Dual infeasibility......: 6.7175978109862574e-12 6.7175978109862574e-12 Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00 Complementarity.........: 2.5601472143227907e-09 2.5601472143227907e-09 Overall NLP error.......: 2.5601472143227907e-09 2.5601472143227907e-09 DenseVector "x" with 4 elements: x[ 1]= 6.3552157588044078e-01 x[ 2]= 2.0662786455638473e-10 x[ 3]= 3.1270187526127102e-01 x[ 4]= 5.1776548651660315e-02 DenseVector "y_c" with 1 elements: y_c[ 1]=-1.8371240051781502e+01 DenseVector "y_d" with 2 elements: y_d[ 1]=-4.1054107970688986e-01 y_d[ 2]=-5.8035508519546641e-01 DenseVector "z_L" with 4 elements: z_L[ 1]= 3.9161679371855925e-09 z_L[ 2]= 2.4333262262711122e-01 z_L[ 3]= 7.9748433126077562e-09 z_L[ 4]= 4.9446067506085493e-08 DenseVector "z_U" with 0 elements: DenseVector "v_L" with 2 elements: v_L[ 1]= 4.1054107970691495e-01 v_L[ 2]= 5.8035508519549150e-01 DenseVector "v_U" with 0 elements: Number of objective function evaluations = 9 Number of objective gradient evaluations = 9 Number of equality constraint evaluations = 9 Number of inequality constraint evaluations = 9 Number of equality constraint Jacobian evaluations = 9 Number of inequality constraint Jacobian evaluations = 9 Number of Lagrangian Hessian evaluations = 8 Total CPU secs in IPOPT (w/o function evaluations) = 0.018 Total CPU secs in NLP function evaluations = 0.000 EXIT: Optimal Solution Found. DenseVector "final x unscaled" with 4 elements: final x unscaled[ 1]= 6.3552157588044078e-01 final x unscaled[ 2]= 2.0662786455638473e-10 final x unscaled[ 3]= 3.1270187526127102e-01 final x unscaled[ 4]= 5.1776548651660315e-02 DenseVector "final y_c unscaled" with 1 elements: final y_c unscaled[ 1]=-1.8371240051781502e+01 DenseVector "final y_d unscaled" with 2 elements: final y_d unscaled[ 1]=-4.1054107970688986e-01 final y_d unscaled[ 2]=-5.8035508519546641e-01 DenseVector "final z_L unscaled" with 4 elements: final z_L unscaled[ 1]= 3.9161679371855925e-09 final z_L unscaled[ 2]= 2.4333262262711122e-01 final z_L unscaled[ 3]= 7.9748433126077562e-09 final z_L unscaled[ 4]= 4.9446067506085493e-08 DenseVector "final z_U unscaled" with 0 elements: