NAG Library Manual, Mark 30.3
Interfaces:  FL   CL   CPP   AD 

NAG CL Interface Introduction
Example description

nag_opt_handle_solve_bxnl (e04ggc) Example Program Results

 E04GG, Nonlinear least squares method for bound-constrained problems
 Begin of Options
     Print File                    =                   6     * d
     Print Level                   =                   1     * U
     Print Options                 =                 Yes     * d
     Print Solution                =                  No     * d
     Monitoring File               =                  -1     * d
     Monitoring Level              =                   4     * d
 
     Infinite Bound Size           =         1.00000E+20     * d
     Stats Time                    =                  No     * d
     Time Limit                    =         1.00000E+06     * d
 
     Bxnl Model                    =        Gauss-newton     * U
     Bxnl Nlls Method              =             Galahad     * d
     Bxnl Glob Method              =                 Reg     * U
     Bxnl Reg Order                =                Auto     * d
     Bxnl Tn Method                =           Min-1-var     * d
     Bxnl Basereg Type             =                None     * d
     Bxnl Basereg Pow              =         2.00000E+00     * d
     Bxnl Basereg Term             =         1.00000E-02     * d
     Bxnl Iteration Limit          =                1000     * d
     Bxnl Monitor Frequency        =                   0     * d
     Bxnl Print Header             =                  30     * d
     Bxnl Save Covariance Matrix   =                  No     * d
     Bxnl Stop Abs Tol Fun         =         1.05367E-08     * d
     Bxnl Stop Abs Tol Grd         =         1.05737E-05     * d
     Bxnl Stop Rel Tol Fun         =         1.05367E-08     * d
     Bxnl Stop Rel Tol Grd         =         1.05367E-08     * d
     Bxnl Stop Step Tol            =         2.22045E-16     * d
     Bxnl Use Second Derivatives   =                 Yes     * U
     Bxnl Use Weights              =                  No     * d
 End of Options
 
 Status: converged, an optimal solution was found
 Value of the objective             2.17328E-06
 Norm of projected gradient         1.51989E-08
 Norm of scaled projected gradient  7.29019E-06
 Norm of step                       4.98107E-04

Solver stored solution iterate in the handle
X: 4.45e-01 1.87e+00 3.07e+00 4.64e+00 -9.98e-01 4.64e+00