Program f07fj_t1w_fe
! F07FJ_T1W_F Example Program Text
! Mark 30.2 Release. NAG Copyright 2024.
! .. Use Statements ..
Use iso_c_binding, Only: c_ptr
Use nagad_library, Only: f07fd_t1w_f, f07fj_t1w_f, &
nagad_t1w_set_derivative, nagad_t1w_w_rtype, &
x10aa_t1w_f, x10ab_t1w_f, Assignment (=)
Use nag_library, Only: nag_wp, x04caf
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
Type (c_ptr) :: ad_handle
Integer :: i, ifail, j, lda, n
Character (1) :: uplo
! .. Local Arrays ..
Type (nagad_t1w_w_rtype), Allocatable :: a(:,:), ax(:,:)
Real (Kind=nag_wp), Allocatable :: ar(:,:), d(:,:)
! .. Executable Statements ..
Write (nout,*) 'F07FJ_T1W_F Example Program Results'
! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n),ax(lda,n),ar(lda,n),d(n,n))
! Read A from data file
ar = 0.0_nag_wp
Read (nin,*) uplo
If (uplo=='U') Then
Read (nin,*)(ar(i,i:n),i=1,n)
Else If (uplo=='L') Then
Read (nin,*)(ar(i,1:i),i=1,n)
End If
a = ar
! Create AD configuration data object
ifail = 0
Call x10aa_t1w_f(ad_handle,ifail)
Do i = 1, n
Call nagad_t1w_set_derivative(a(i,i),1.0_nag_wp)
ax = a
! Factorize A
ifail = 0
Call f07fd_t1w_f(ad_handle,uplo,n,ax,lda,ifail)
! Compute inverse of A
ifail = 0
Call f07fj_t1w_f(ad_handle,uplo,n,ax,lda,ifail)
a(i,i)%tangent = 0.0_nag_wp
Do j = 1, n
d(j,i) = ax(j,j)%tangent
End Do
End Do
! Print inverse
ar(1:n,1:n) = ax(1:n,1:n)%value
ifail = 0
Call x04caf('General',' ',n,n,ar,n,'Inverse',ifail)
Write (nout,*)
Write (nout,*) ' Derivatives calculated: First order tangents'
Write (nout,*) ' Computational mode : algorithmic'
Write (nout,*)
Write (nout,*) ' Derivatives of Ainv_ii w.r.t. A_jj'
! Setup evaluation of derivatives via adjoints
Call x04caf('General',' ',n,n,d,n,'',ifail)
! Remove computational data object
Call x10ab_t1w_f(ad_handle,ifail)
End Program f07fj_t1w_fe