NAG Library Manual, Mark 30.2
Interfaces:  FL   CL   CPP   AD 

NAG FL Interface Introduction
Example description
!   D02CJF Example Program Text
!   Mark 30.2 Release. NAG Copyright 2024.

    Module d02cjfe_mod

!     Data for D02CJF example program

!     .. Use Statements ..
      Use nag_library, Only: nag_wp
!     .. Implicit None Statement ..
      Implicit None
!     .. Accessibility Statements ..
      Private
      Public                           :: fcn, g, output
!     .. Parameters ..
      Integer, Parameter, Public       :: n = 3, nin = 5, nout = 6
!     .. Local Scalars ..
      Real (Kind=nag_wp), Public, Save :: h, xend
!     n: number of differential equations
    Contains
      Subroutine output(xsol,y)

!       .. Scalar Arguments ..
        Real (Kind=nag_wp), Intent (Inout) :: xsol
!       .. Array Arguments ..
        Real (Kind=nag_wp), Intent (In) :: y(*)
!       .. Local Scalars ..
        Integer                        :: j
!       .. Intrinsic Procedures ..
        Intrinsic                      :: abs
!       .. Executable Statements ..
        Write (nout,99999) xsol, (y(j),j=1,n)
        xsol = xsol + h
!       Make sure we exactly hit xsol = xend
        If (abs(xsol-xend)<h/4.0E0_nag_wp) Then
          xsol = xend
        End If
        Return

99999   Format (1X,F8.2,3F13.5)
      End Subroutine output
      Subroutine fcn(x,y,f)

!       .. Parameters ..
        Real (Kind=nag_wp), Parameter  :: alpha = -0.032E0_nag_wp
        Real (Kind=nag_wp), Parameter  :: beta = -0.02E0_nag_wp
!       .. Scalar Arguments ..
        Real (Kind=nag_wp), Intent (In) :: x
!       .. Array Arguments ..
        Real (Kind=nag_wp), Intent (Inout) :: f(*)
        Real (Kind=nag_wp), Intent (In) :: y(*)
!       .. Intrinsic Procedures ..
        Intrinsic                      :: cos, tan
!       .. Executable Statements ..
        f(1) = tan(y(3))
        f(2) = alpha*tan(y(3))/y(2) + beta*y(2)/cos(y(3))
        f(3) = alpha/y(2)**2
        Return
      End Subroutine fcn
      Function g(x,y)

!       .. Function Return Value ..
        Real (Kind=nag_wp)             :: g
!       .. Scalar Arguments ..
        Real (Kind=nag_wp), Intent (In) :: x
!       .. Array Arguments ..
        Real (Kind=nag_wp), Intent (In) :: y(*)
!       .. Executable Statements ..
        g = y(1)
        Return
      End Function g
    End Module d02cjfe_mod
    Program d02cjfe

!     D02CJF Example Main Program

!     .. Use Statements ..
      Use d02cjfe_mod, Only: fcn, g, h, n, nin, nout, output, xend
      Use nag_library, Only: d02cjf, d02cjw, d02cjx, nag_wp
!     .. Implicit None Statement ..
      Implicit None
!     .. Local Scalars ..
      Real (Kind=nag_wp)               :: tol, x, xinit
      Integer                          :: i, icase, ifail, iw, j, kinit
!     .. Local Arrays ..
      Real (Kind=nag_wp), Allocatable  :: w(:), y(:), yinit(:)
!     .. Intrinsic Procedures ..
      Intrinsic                        :: real
!     .. Executable Statements ..
      Write (nout,*) 'D02CJF Example Program Results'
      iw = 21*n + 28
      Allocate (w(iw),y(n),yinit(n))
!     Skip heading in data file
      Read (nin,*)
!     xinit: initial x value, xend: final x value.
      Read (nin,*) xinit
      Read (nin,*) xend
      Read (nin,*) yinit(1:n)
      Read (nin,*) kinit
      Do icase = 1, 4
        Write (nout,*)
        Select Case (icase)
        Case (1)
          Write (nout,99995) icase, 'intermediate output, root-finding'
        Case (2)
          Write (nout,99995) icase, 'no intermediate output, root-finding'
        Case (3)
          Write (nout,99995) icase, 'intermediate output, no root-finding'
        Case (4)
          Write (nout,99995) icase,                                            &
            'no intermediate output, no root-finding ( integrate to XEND)'
        End Select
        Do j = 4, 5
          tol = 10.0E0_nag_wp**(-j)
          Write (nout,*)
          Write (nout,99999) ' Calculation with TOL =', tol
          x = xinit
          y(1:n) = yinit(1:n)
          If (icase/=2) Then
            Write (nout,*) '     X         Y(1)         Y(2)         Y(3)'
            h = (xend-x)/real(kinit+1,kind=nag_wp)
          End If
!         ifail: behaviour on error exit
!                =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
          ifail = 0
          Select Case (icase)
          Case (1)
            Call d02cjf(x,xend,n,y,fcn,tol,'Default',output,g,w,ifail)
            Write (nout,99998) '  Root of Y(1) = 0.0 at', x
            Write (nout,99997) '  Solution is', (y(i),i=1,n)
          Case (2)
            Call d02cjf(x,xend,n,y,fcn,tol,'Default',d02cjx,g,w,ifail)
            Write (nout,99998) '  Root of Y(1) = 0.0 at', x
            Write (nout,99997) '  Solution is', (y(i),i=1,n)
          Case (3)
            Call d02cjf(x,xend,n,y,fcn,tol,'Default',output,d02cjw,w,ifail)
          Case (4)
            Write (nout,99996) x, (y(i),i=1,n)
            Call d02cjf(x,xend,n,y,fcn,tol,'Default',d02cjx,d02cjw,w,ifail)
            Write (nout,99996) x, (y(i),i=1,n)
          End Select
        End Do
        If (icase<4) Then
          Write (nout,*)
        End If
      End Do

99999 Format (1X,A,E8.1)
99998 Format (1X,A,F7.3)
99997 Format (1X,A,3F13.5)
99996 Format (1X,F8.2,3F13.5)
99995 Format (1X,'Case ',I1,': ',A)
    End Program d02cjfe