/* D01PA_A1W_F C++ Header Example Program.
*
* Copyright 2024 Numerical Algorithms Group.
* Mark 30.2, 2024.
*/
#include <dco.hpp>
#include <iostream>
#include <math.h>
#include <nag.h>
#include <nagad.h>
#include <stdio.h>
using namespace std;
int main()
{
// Scalars
int exit_status = 0;
Integer mxord = 5, ndim = 3, sdvert = 8, ldvert = 4;
cout << "D01PA_A1W_F C++ Header Example Program Results\n\n";
// Allocate memory
nagad_a1w_w_rtype *finvls = 0, *vert = 0, *vert_in = 0;
if (!(finvls = NAG_ALLOC(mxord, nagad_a1w_w_rtype)) ||
!(vert = NAG_ALLOC(ldvert * sdvert, nagad_a1w_w_rtype)) ||
!(vert_in = NAG_ALLOC(ldvert * ndim, nagad_a1w_w_rtype)))
{
cout << "Allocation failure\n";
exit_status = -1;
}
else
{
for (int i = 0; i < ndim * ldvert; i++)
{
vert_in[i] = 0.0;
}
for (int i = 1; i < ndim * ldvert; i = i + ldvert + 1)
{
vert_in[i] = 1.0;
}
// Create AD tape
dco::ga1s<double>::global_tape = dco::ga1s<double>::tape_t::create();
// Create AD configuration data object
Integer ifail = 0;
nag::ad::handle_t ad_handle;
/* Register variables to differentiate w.r.t. */
for (int i = 0; i < ndim * ldvert; i++)
{
dco::ga1s<double>::global_tape->register_variable(vert_in[i]);
}
for (int i = 0; i < ndim * ldvert; i++)
{
vert[i] = vert_in[i];
}
cout << "\n Maxord Estimated Estimated Integrand\n";
cout << " value accuracy evaluations\n";
cout.setf(ios::scientific, ios::floatfield);
cout.precision(4);
Integer minord = 0, nevals = 1;
auto functn = [&](nag::ad::handle_t & ad_handle,
const Integer & ndim,
const nagad_a1w_w_rtype *x,
nagad_a1w_w_rtype & ret)
{
nagad_a1w_w_rtype tmp1;
// dco/c++ used here to perform AD of the following
tmp1 = x[0] + x[1] + x[2];
ret = exp(tmp1) * cos(tmp1);
};
for (Integer maxord = 1; maxord <= mxord; maxord++)
{
// Call the AD routine
nagad_a1w_w_rtype esterr;
ifail = 0;
nag::ad::d01pa(ad_handle, ndim, vert, ldvert, sdvert, functn, minord,
maxord, finvls, esterr, ifail);
double finv_r = dco::value(finvls[maxord - 1]);
double estr_r = dco::value(esterr);
cout.width(5);
cout << maxord;
cout.width(15);
cout << finv_r;
cout.width(15);
cout << estr_r;
cout.width(12);
cout << nevals << endl;
nevals = (nevals * (maxord + ndim + 1)) / maxord;
}
cout << "\n Derivatives calculated: First order adjoints\n";
cout << " Computational mode : algorithmic\n";
// Get derivatives
double inc = 1.0;
nagad_a1w_w_rtype sol = finvls[mxord - 1];
dco::derivative(sol) += inc;
dco::ga1s<double>::global_tape->sparse_interpret() = true;
dco::ga1s<double>::global_tape->interpret_adjoint();
cout.setf(ios::right);
cout.precision(4);
cout << "\n Solution, I = ";
double ans_value = dco::value(finvls[mxord - 1]);
cout.width(12);
cout << ans_value << endl;
cout << "\n Derivatives w.r.t vertices:\n";
cout << " i j d/dv(i,j)\n";
cout.setf(ios::scientific, ios::floatfield);
int k = -1;
for (int i = 1; i <= ndim + 1; i++)
{
for (int j = 1; j <= ndim; j++)
{
k = k + 1;
double dfdv = dco::derivative(vert_in[k]);
cout.width(4);
cout << i;
cout.width(4);
cout << j;
cout.width(14);
cout << dfdv << endl;
}
}
dco::ga1s<double>::tape_t::remove(dco::ga1s<double>::global_tape);
}
NAG_FREE(vert);
NAG_FREE(vert_in);
NAG_FREE(finvls);
return exit_status;
}