/* nag::ad::g02ab Adjoint Example Program.
*/
#include <dco.hpp>
#include <iostream>
#include <nagad.h>
std::stringstream filecontent("4 \
2.0 -1.0 0.0 0.0 \
-1.0 2.0 -1.0 0.0 \
0.0 -1.0 2.0 -1.0 \
0.0 0.0 -1.0 2.0 \
100.0 20.0 20.0 20.0");
// Function which calls NAG AD routines.
template <typename T>
void func(std::vector<T> &g, std::vector<T> &w, std::vector<T> &x);
// Driver with adjoint calls.
// Computes the Nearest Correlation Matrix X for an input matrix G.
// Also, computes the sum of all Jacobian elements of dX/dG.
void driver(const std::vector<double> &gv,
const std::vector<double> &wv,
std::vector<double> & xv,
double & dxdg);
int main()
{
std::cout << " nag::ad::g02ab Adjoint Example Program Results\n";
Integer n;
filecontent >> n;
// Input Matrix G, whose NCM we want to compute
std::vector<double> gv(n * n);
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < n; ++j)
{
filecontent >> gv[i + j * n];
}
}
// The square roots of the diagonal elements of W
std::vector<double> wv(n);
for (int i = 0; i < n; i++)
{
filecontent >> wv[i];
}
// Output NCM X
std::vector<double> xv(n * n);
// Sum of all Jacobian elements dX/dG
double dxdg;
driver(gv, wv, xv, dxdg);
std::cout.setf(std::ios::scientific, std::ios::floatfield);
std::cout.precision(5);
std::cout << "\n Nearest Correlation Matrix:\n\n";
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
std::cout.width(13);
std::cout << xv[i + j * n];
}
std::cout << std::endl;
}
std::cout << "\n Derivatives calculated: First order adjoints\n";
std::cout << " Computational mode : algorithmic\n\n";
// Print derivatives of NCM X w.r.t. input matrix G
std::cout << "\n Sum of Jacobian elements of NCM X w.r.t. input matrix G:\n";
std::cout << " sum_ij [dX/dG]_ij = " << dxdg << std::endl;
return 0;
}
// Driver with adjoint calls.
// Computes the Nearest Correlation Matrix X for an input matrix G.
// Also, computes the sum of all Jacobian elements of dX/dG.
void driver(const std::vector<double> &gv,
const std::vector<double> &wv,
std::vector<double> & xv,
double & dxdg)
{
using T = dco::ga1s<double>::type;
// Create AD tape
dco::ga1s<double>::global_tape = dco::ga1s<double>::tape_t::create();
// AD data types
std::vector<T> g(gv.size()), g1(gv.size());
dco::value(g) = gv;
dco::ga1s<double>::global_tape->register_variable(g);
// nag::ad::g02ab modifies input matrix g. To compute derivatives
// dx/dg we need to save the input nodes in the DAG. Hence we
// overwrite a copy of g.
g1 = g;
std::vector<T> w(wv.size());
dco::value(w) = wv;
// Variable to differentiate
std::vector<T> x(xv.size());
// Call the NAG AD Lib functions
func(g1, w, x);
// Extract the computed NCM
xv = dco::value(x);
dco::ga1s<double>::global_tape->register_output_variable(x);
dco::derivative(x) = std::vector<double>(xv.size(), 1.0);
dco::ga1s<double>::global_tape->interpret_adjoint();
// Sum of the adjoints of g
dxdg = 0.0;
for (int i = 0; i < g.size(); i++)
{
dxdg += dco::derivative(g[i]);
}
// Remove tape
dco::ga1s<double>::tape_t::remove(dco::ga1s<double>::global_tape);
}
// Function which calls NAG AD routines.
template <typename T>
void func(std::vector<T> &g, std::vector<T> &w, std::vector<T> &x)
{
Integer n = sqrt(g.size());
Integer pdg = n;
Integer pdx = n;
// Set up method parameters
T errtol = 0.0, alpha = 0.02;
Integer maxits = 0;
Integer maxit = 0;
// Output variables
Integer iter, feval;
T nrmgrd;
// Create AD configuration data object
Integer ifail = 0;
nag::ad::handle_t ad_handle;
// Routine for computing the NCM of G.
nag::ad::g02ab(ad_handle, g.data(), pdg, n, "B", alpha, w.data(), errtol,
maxits, maxit, x.data(), pdx, iter, feval, nrmgrd, ifail);
}