Program f08uqfe
! F08UQF Example Program Text
! Mark 30.1 Release. NAG Copyright 2024.
! .. Use Statements ..
Use nag_library, Only: nag_wp, zhbgvd
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = 'U'
! .. Local Scalars ..
Integer :: i, info, j, ka, kb, ldab, ldbb, &
liwork, lrwork, lwork, n
! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ab(:,:), bb(:,:), work(:)
Complex (Kind=nag_wp) :: dummy(1,1)
Real (Kind=nag_wp), Allocatable :: rwork(:), w(:)
Integer, Allocatable :: iwork(:)
! .. Intrinsic Procedures ..
Intrinsic :: max, min
! .. Executable Statements ..
Write (nout,*) 'F08UQF Example Program Results'
Write (nout,*)
! Skip heading in data file
Read (nin,*)
Read (nin,*) n, ka, kb
ldab = ka + 1
ldbb = kb + 1
lrwork = n
lwork = n
liwork = 1
Allocate (ab(ldab,n),bb(ldbb,n),work(lwork),rwork(lrwork),w(n), &
iwork(liwork))
! Read the upper or lower triangular parts of the matrices A and
! B from data file
If (uplo=='U') Then
Read (nin,*)((ab(ka+1+i-j,j),j=i,min(n,i+ka)),i=1,n)
Read (nin,*)((bb(kb+1+i-j,j),j=i,min(n,i+kb)),i=1,n)
Else If (uplo=='L') Then
Read (nin,*)((ab(1+i-j,j),j=max(1,i-ka),i),i=1,n)
Read (nin,*)((bb(1+i-j,j),j=max(1,i-kb),i),i=1,n)
End If
! Solve the generalized Hermitian band eigenvalue problem
! A*x = lambda*B*x
! The NAG name equivalent of zhbgvd is f08uqf
Call zhbgvd('No vectors',uplo,n,ka,kb,ab,ldab,bb,ldbb,w,dummy,1,work, &
lwork,rwork,lrwork,iwork,liwork,info)
If (info==0) Then
! Print solution
Write (nout,*) 'Eigenvalues'
Write (nout,99999) w(1:n)
Else If (info>n .And. info<=2*n) Then
i = info - n
Write (nout,99998) 'The leading minor of order ', i, &
' of B is not positive definite'
Else
Write (nout,99997) 'Failure in ZHBGVD. INFO =', info
End If
99999 Format (3X,(6F11.4))
99998 Format (1X,A,I4,A)
99997 Format (1X,A,I4)
End Program f08uqfe