NAG Library Manual, Mark 30.1
Interfaces:  FL   CL   CPP   AD 

NAG CL Interface Introduction
Example description
/* nag_lapackeig_zhbev (f08hnc) Example Program.
 *
 * Copyright 2024 Numerical Algorithms Group.
 *
 * Mark 30.1, 2024.
 */

#include <math.h>
#include <nag.h>
#include <stdio.h>

int main(void) {
  /* Scalars */
  double eerrbd, eps;
  Integer exit_status = 0, i, j, kd, n, pdab, pdz;
  /* Arrays */
  char nag_enum_arg[40];
  Complex *ab = 0, *z = 0;
  double *rcondz = 0, *w = 0, *zerrbd = 0;
  /* Nag Types */
  Nag_OrderType order;
  Nag_UploType uplo;
  NagError fail;

#ifdef NAG_COLUMN_MAJOR
#define AB_UPPER(I, J) ab[(J - 1) * pdab + kd + I - J]
#define AB_LOWER(I, J) ab[(J - 1) * pdab + I - J]
#define Z(I, J) z[(J - 1) * pdz + I - 1]
  order = Nag_ColMajor;
#else
#define AB_UPPER(I, J) ab[(I - 1) * pdab + J - I]
#define AB_LOWER(I, J) ab[(I - 1) * pdab + kd + J - I]
#define Z(I, J) z[(I - 1) * pdz + J - 1]
  order = Nag_RowMajor;
#endif

  INIT_FAIL(fail);

  printf("nag_lapackeig_zhbev (f08hnc) Example Program Results\n\n");

  /* Skip heading in data file */
  scanf("%*[^\n]");
  scanf("%" NAG_IFMT "%" NAG_IFMT "%*[^\n]", &n, &kd);

  /* Read uplo */
  scanf("%39s%*[^\n]", nag_enum_arg);
  /* nag_enum_name_to_value (x04nac).
   * Converts NAG enum member name to value
   */
  uplo = (Nag_UploType)nag_enum_name_to_value(nag_enum_arg);

  /* Allocate memory */
  if (!(ab = NAG_ALLOC((kd + 1) * n, Complex)) ||
      !(z = NAG_ALLOC(n * n, Complex)) || !(rcondz = NAG_ALLOC(n, double)) ||
      !(w = NAG_ALLOC(n, double)) || !(zerrbd = NAG_ALLOC(n, double))) {
    printf("Allocation failure\n");
    exit_status = -1;
    goto END;
  }

  pdab = kd + 1;
  pdz = n;

  /* Read the upper or lower triangular part of the symmetric band
   * matrix A from data file.
   */
  if (uplo == Nag_Upper) {
    for (i = 1; i <= n; ++i)
      for (j = i; j <= MIN(n, i + kd); ++j)
        scanf(" ( %lf , %lf )", &AB_UPPER(i, j).re, &AB_UPPER(i, j).im);
    scanf("%*[^\n]");
  } else if (uplo == Nag_Lower) {
    for (i = 1; i <= n; ++i)
      for (j = MAX(1, i - kd); j <= i; ++j)
        scanf(" ( %lf , %lf )", &AB_LOWER(i, j).re, &AB_LOWER(i, j).im);
    scanf("%*[^\n]");
  }

  /* nag_lapackeig_zhbev (f08hnc).
   * Solve the band Hermitian eigenvalue problem.
   */
  nag_lapackeig_zhbev(order, Nag_DoBoth, uplo, n, kd, ab, pdab, w, z, pdz,
                      &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_lapackeig_zhbev (f08hnc).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
  }

  /* nag_complex_divide (a02cdc).
   * Normalize the eigenvectors.
   */
  for (j = 1; j <= n; j++)
    for (i = n; i >= 1; i--)
      Z(i, j) = nag_complex_divide(Z(i, j), Z(1, j));

  /* Print solution */
  printf("Eigenvalues\n");
  for (j = 0; j < n; ++j)
    printf("%8.4f%s", w[j], (j + 1) % 8 == 0 ? "\n" : " ");
  printf("\n");

  /* nag_file_print_matrix_complex_gen (x04dac).
   * Print eigenvectors.
   */
  fflush(stdout);
  nag_file_print_matrix_complex_gen(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
                                    n, n, z, pdz, "Eigenvectors", 0, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_file_print_matrix_complex_gen (x04dac).\n%s\n",
           fail.message);
    exit_status = 1;
    goto END;
  }

  /* Get the machine precision, eps, using nag_machine_precision (X02AJC)
   * and compute the approximate error bound for the computed eigenvalues.
   * Note that for the 2-norm, ||A|| = max {|w[i]|, i=0..n-1}, and since
   * the eigenvalues are in ascending order ||A|| = max( |w[0]|, |w[n-1]|).
   */
  eps = nag_machine_precision;
  eerrbd = eps * MAX(fabs(w[0]), fabs(w[n - 1]));

  /* nag_lapackeig_ddisna (f08flc).
   * Estimate reciprocal condition numbers for the eigenvectors.
   */
  nag_lapackeig_ddisna(Nag_EigVecs, n, n, w, rcondz, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_lapackeig_ddisna (f08flc).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
  }

  /* Compute the error estimates for the eigenvectors */
  for (i = 0; i < n; ++i)
    zerrbd[i] = eerrbd / rcondz[i];

  /* Print the approximate error bounds for the eigenvalues and vectors */
  printf("\nError estimate for the eigenvalues\n");
  printf("%11.1e\n", eerrbd);

  printf("Error estimates for the eigenvectors\n");
  for (i = 0; i < n; ++i)
    printf("%11.1e%s", zerrbd[i], (i + 1) % 6 == 0 || i == n - 1 ? "\n" : " ");

END:
  NAG_FREE(ab);
  NAG_FREE(z);
  NAG_FREE(rcondz);
  NAG_FREE(w);
  NAG_FREE(zerrbd);

  return exit_status;
}

#undef AB_UPPER
#undef AB_LOWER
#undef Z