/* nag_blast_dsymm (f16ycc) Example Program.
*
* Copyright 2023 Numerical Algorithms Group.
*
* Mark 29.0, 2023.
*/
#include <nag.h>
#include <stdio.h>
int main(void) {
/* Scalars */
double alpha, beta;
Integer exit_status, i, j, m, n, pda, pdb, pdc;
/* Arrays */
double *a = 0, *b = 0, *c = 0;
char nag_enum_arg[40];
/* Nag Types */
NagError fail;
Nag_OrderType order;
Nag_SideType side;
Nag_UploType uplo;
#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J - 1) * pda + I - 1]
#define B(I, J) b[(J - 1) * pdb + I - 1]
#define C(I, J) c[(J - 1) * pdc + I - 1]
order = Nag_ColMajor;
#else
#define A(I, J) a[(I - 1) * pda + J - 1]
#define B(I, J) b[(I - 1) * pdb + J - 1]
#define C(I, J) c[(I - 1) * pdc + J - 1]
order = Nag_RowMajor;
#endif
exit_status = 0;
INIT_FAIL(fail);
printf("nag_blast_dsymm (f16ycc) Example Program Results\n\n");
/* Skip heading in data file */
scanf("%*[^\n] ");
/* Read the problem dimensions */
scanf("%" NAG_IFMT "%" NAG_IFMT "%*[^\n] ", &m, &n);
/* Read the side parameter */
scanf("%39s%*[^\n] ", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/
side = (Nag_SideType)nag_enum_name_to_value(nag_enum_arg);
/* Read uplo */
scanf("%39s%*[^\n] ", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/
uplo = (Nag_UploType)nag_enum_name_to_value(nag_enum_arg);
/* Read scalar parameters */
scanf("%lf%lf%*[^\n] ", &alpha, &beta);
if (side == Nag_LeftSide)
pda = m;
else
pda = n;
#ifdef NAG_COLUMN_MAJOR
pdb = m;
pdc = m;
#else
pdb = n;
pdc = n;
#endif
if (m > 0 && n > 0) {
/* Allocate memory */
if (side == Nag_LeftSide) {
if (!(a = NAG_ALLOC(m * m, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
} else {
if (!(a = NAG_ALLOC(n * n, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
}
if (!(b = NAG_ALLOC(m * n, double)) || !(c = NAG_ALLOC(m * n, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
} else {
printf("Invalid m or n\n");
exit_status = 1;
return exit_status;
}
/* Input matrix A */
if (uplo == Nag_Upper) {
for (i = 1; i <= pda; ++i) {
for (j = i; j <= pda; ++j)
scanf("%lf", &A(i, j));
scanf("%*[^\n] ");
}
} else {
for (i = 1; i <= pda; ++i) {
for (j = 1; j <= i; ++j)
scanf("%lf", &A(i, j));
scanf("%*[^\n] ");
}
}
/* Input matrix B */
for (i = 1; i <= m; ++i) {
for (j = 1; j <= n; ++j)
scanf("%lf", &B(i, j));
scanf("%*[^\n] ");
}
/* Input matrix C */
for (i = 1; i <= m; ++i) {
for (j = 1; j <= n; ++j)
scanf("%lf", &C(i, j));
scanf("%*[^\n] ");
}
/* nag_blast_dsymm (f16ycc).
* Symmetric matrix-matrix multiply.
*
*/
nag_blast_dsymm(order, side, uplo, m, n, alpha, a, pda, b, pdb, beta, c, pdc,
&fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_blast_dsymm.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Print result */
/* nag_file_print_matrix_real_gen (x04cac).
* Print real general matrix (easy-to-use)
*/
fflush(stdout);
nag_file_print_matrix_real_gen(order, Nag_GeneralMatrix, Nag_NonUnitDiag, m,
n, c, pdc, "Matrix Matrix Product", 0, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_file_print_matrix_real_gen (x04cac).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(c);
return exit_status;
}