/* nag_lapacklin_zposvx (f07fpc) Example Program.
*
* Copyright 2023 Numerical Algorithms Group.
*
* Mark 29.0, 2023.
*/
#include <nag.h>
#include <stdio.h>
int main(void) {
/* Scalars */
double rcond;
Integer exit_status = 0, i, j, n, nrhs, pda, pdaf, pdb, pdx;
/* Arrays */
Complex *a = 0, *af = 0, *b = 0, *x = 0;
double *berr = 0, *ferr = 0, *s = 0;
/* Nag Types */
NagError fail;
Nag_OrderType order;
Nag_EquilibrationType equed;
#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J - 1) * pda + I - 1]
#define B(I, J) b[(J - 1) * pdb + I - 1]
order = Nag_ColMajor;
#else
#define A(I, J) a[(I - 1) * pda + J - 1]
#define B(I, J) b[(I - 1) * pdb + J - 1]
order = Nag_RowMajor;
#endif
INIT_FAIL(fail);
printf("nag_lapacklin_zposvx (f07fpc) Example Program Results\n\n");
/* Skip heading in data file */
scanf("%*[^\n]");
scanf("%" NAG_IFMT "%" NAG_IFMT "%*[^\n]", &n, &nrhs);
if (n < 0 || nrhs < 0) {
printf("Invalid n or nrhs\n");
exit_status = 1;
goto END;
}
pda = n;
pdaf = n;
#ifdef NAG_COLUMN_MAJOR
pdb = n;
pdx = n;
#else
pdb = nrhs;
pdx = nrhs;
#endif
/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, Complex)) || !(af = NAG_ALLOC(n * n, Complex)) ||
!(b = NAG_ALLOC(n * nrhs, Complex)) ||
!(x = NAG_ALLOC(n * nrhs, Complex)) ||
!(berr = NAG_ALLOC(nrhs, double)) || !(ferr = NAG_ALLOC(nrhs, double)) ||
!(s = NAG_ALLOC(n, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read the upper triangular part of A from data file */
for (i = 1; i <= n; ++i)
for (j = i; j <= n; ++j)
scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
scanf("%*[^\n]");
/* Read B from data file */
for (i = 1; i <= n; ++i)
for (j = 1; j <= nrhs; ++j)
scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
scanf("%*[^\n]");
/* Solve the equations AX = B for X using nag_lapacklin_zposvx (f07fpc). */
nag_lapacklin_zposvx(order, Nag_EquilibrateAndFactor, Nag_Upper, n, nrhs, a,
pda, af, pdaf, &equed, s, b, pdb, x, pdx, &rcond, ferr,
berr, &fail);
if (fail.code != NE_NOERROR && fail.code != NE_SINGULAR) {
printf("Error from nag_lapacklin_zposvx (f07fpc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Print solution using nag_file_print_matrix_complex_gen_comp (x04dbc). */
fflush(stdout);
nag_file_print_matrix_complex_gen_comp(
order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x, pdx,
Nag_BracketForm, "%7.4f", "Solution(s)", Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_file_print_matrix_complex_gen_comp (x04dbc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
/* Print error bounds, condition number and the form of equilibration */
printf("\nBackward errors (machine-dependent)\n");
for (j = 0; j < nrhs; ++j)
printf("%11.1e%s", berr[j], j % 7 == 6 ? "\n" : " ");
printf("\n\nEstimated forward error bounds (machine-dependent)\n");
for (j = 0; j < nrhs; ++j)
printf("%11.1e%s", ferr[j], j % 7 == 6 ? "\n" : " ");
printf("\n\nEstimate of reciprocal condition number\n%11.1e\n\n", rcond);
if (equed == Nag_NoEquilibration)
printf("A has not been equilibrated\n");
else if (equed == Nag_RowAndColumnEquilibration)
printf("A has been row and column scaled as diag(S)*A*diag(S)\n");
if (fail.code == NE_SINGULAR) {
printf("Error from nag_lapacklin_zposvx (f07fpc).\n%s\n", fail.message);
exit_status = 1;
}
END:
NAG_FREE(a);
NAG_FREE(af);
NAG_FREE(b);
NAG_FREE(x);
NAG_FREE(berr);
NAG_FREE(ferr);
NAG_FREE(s);
return exit_status;
}
#undef B
#undef A