NAG Library Manual, Mark 29
Interfaces:  FL   CL   CPP   AD 

NAG FL Interface Introduction
Example description
!   D03PRF Example Program Text
!   Mark 29.0 Release. NAG Copyright 2023.

    Module d03prfe_mod

!     D03PRF Example Program Module:
!            Parameters and User-defined Routines

!     .. Use Statements ..
      Use nag_library, Only: nag_wp
!     .. Implicit None Statement ..
      Implicit None
!     .. Accessibility Statements ..
      Private
      Public                           :: bndary, exact, monitf, pdedef,       &
                                          uvinit
!     .. Parameters ..
      Real (Kind=nag_wp), Parameter    :: half = 0.5_nag_wp
      Real (Kind=nag_wp), Parameter    :: two = 2.0_nag_wp
      Integer, Parameter, Public       :: itrace = 0, nin = 5, nleft = 1,      &
                                          nout = 6, npde = 2, nv = 0,          &
                                          nxfix = 0, nxi = 0
    Contains
      Subroutine uvinit(npde,npts,nxi,x,xi,u,nv,v)

!       .. Use Statements ..
        Use nag_library, Only: x01aaf
!       .. Scalar Arguments ..
        Integer, Intent (In)           :: npde, npts, nv, nxi
!       .. Array Arguments ..
        Real (Kind=nag_wp), Intent (Out) :: u(npde,npts), v(nv)
        Real (Kind=nag_wp), Intent (In) :: x(npts), xi(nxi)
!       .. Local Scalars ..
        Real (Kind=nag_wp)             :: pi
        Integer                        :: i
!       .. Intrinsic Procedures ..
        Intrinsic                      :: exp, sin
!       .. Executable Statements ..
        pi = x01aaf(pi)
        Do i = 1, npts
          u(1,i) = exp(x(i))
          u(2,i) = x(i)**2 + sin(two*pi*x(i)**2)
        End Do
!       There are no coupled ODEs in this problem (nv = 0):
        v(:) = 0._nag_wp
        Return
      End Subroutine uvinit
      Subroutine pdedef(npde,t,x,u,udot,ux,nv,v,vdot,res,ires)

!       .. Scalar Arguments ..
        Real (Kind=nag_wp), Intent (In) :: t, x
        Integer, Intent (Inout)        :: ires
        Integer, Intent (In)           :: npde, nv
!       .. Array Arguments ..
        Real (Kind=nag_wp), Intent (Out) :: res(npde)
        Real (Kind=nag_wp), Intent (In) :: u(npde), udot(npde), ux(npde),      &
                                          v(nv), vdot(nv)
!       .. Executable Statements ..
        If (ires==-1) Then
          res(1) = udot(1)
          res(2) = udot(2)
        Else
          res(1) = udot(1) + ux(1) + ux(2)
          res(2) = udot(2) + 4.0_nag_wp*ux(1) + ux(2)
        End If
        Return
      End Subroutine pdedef
      Subroutine bndary(npde,t,ibnd,nobc,u,udot,nv,v,vdot,res,ires)

!       .. Use Statements ..
        Use nag_library, Only: x01aaf
!       .. Scalar Arguments ..
        Real (Kind=nag_wp), Intent (In) :: t
        Integer, Intent (In)           :: ibnd, nobc, npde, nv
        Integer, Intent (Inout)        :: ires
!       .. Array Arguments ..
        Real (Kind=nag_wp), Intent (Out) :: res(nobc)
        Real (Kind=nag_wp), Intent (In) :: u(npde), udot(npde), v(nv),         &
                                          vdot(nv)
!       .. Local Scalars ..
        Real (Kind=nag_wp)             :: pp, ppt1, ppt3, t1, t3
!       .. Intrinsic Procedures ..
        Intrinsic                      :: exp, sin
!       .. Executable Statements ..
        If (ires==-1) Then
          res(1) = 0.0_nag_wp
        Else
          pp = two*x01aaf(pp)
          t1 = t
          t3 = -3.0_nag_wp*t
          If (ibnd==0) Then
            ppt3 = sin(pp*t3**2)
            ppt1 = sin(pp*t1**2)
            res(1) = u(1) - half*(exp(t3)+exp(t1)+half*(ppt3-ppt1))
            res(1) = res(1) - 2.0_nag_wp*t**2
          Else
            t3 = t3 + 1.0_nag_wp
            t1 = t1 + 1.0_nag_wp
            ppt3 = sin(pp*t3**2)
            ppt1 = sin(pp*t1**2)
            res(1) = u(2) - (exp(t3)-exp(t1)+half*(ppt3+ppt1))
            res(1) = res(1) - (1.0_nag_wp+5.0_nag_wp*t**2-2.0_nag_wp*t)
          End If
        End If
        Return
      End Subroutine bndary
      Subroutine monitf(t,npts,npde,x,u,fmon)

!       .. Scalar Arguments ..
        Real (Kind=nag_wp), Intent (In) :: t
        Integer, Intent (In)           :: npde, npts
!       .. Array Arguments ..
        Real (Kind=nag_wp), Intent (Out) :: fmon(npts)
        Real (Kind=nag_wp), Intent (In) :: u(npde,npts), x(npts)
!       .. Local Scalars ..
        Real (Kind=nag_wp)             :: d2x1, d2x2, h1, h2, h3
        Integer                        :: i
!       .. Intrinsic Procedures ..
        Intrinsic                      :: abs, max
!       .. Executable Statements ..
        Do i = 2, npts - 1
          h1 = x(i) - x(i-1)
          h2 = x(i+1) - x(i)
          h3 = half*(x(i+1)-x(i-1))
!         Second derivatives ..
          d2x1 = abs(((u(1,i+1)-u(1,i))/h2-(u(1,i)-u(1,i-1))/h1)/h3)
          d2x2 = abs(((u(2,i+1)-u(2,i))/h2-(u(2,i)-u(2,i-1))/h1)/h3)
          fmon(i) = max(d2x1,d2x2)
        End Do
        fmon(1) = fmon(2)
        fmon(npts) = fmon(npts-1)
        Return
      End Subroutine monitf
      Subroutine exact(t,npde,npts,x,u)

!       Exact solution (for comparison purposes)

!       .. Use Statements ..
        Use nag_library, Only: x01aaf
!       .. Scalar Arguments ..
        Real (Kind=nag_wp), Intent (In) :: t
        Integer, Intent (In)           :: npde, npts
!       .. Array Arguments ..
        Real (Kind=nag_wp), Intent (Out) :: u(npde,npts)
        Real (Kind=nag_wp), Intent (In) :: x(npts)
!       .. Local Scalars ..
        Real (Kind=nag_wp)             :: pp, ppt1, ppt3, x1, x3
        Integer                        :: i
!       .. Intrinsic Procedures ..
        Intrinsic                      :: exp, sin
!       .. Executable Statements ..
        pp = 2.0_nag_wp*x01aaf(pp)
        Do i = 1, npts
          x1 = x(i) + t
          x3 = x(i) - 3.0_nag_wp*t
          ppt3 = sin(pp*x3**2)
          ppt1 = sin(pp*x1**2)
          u(1,i) = half*(exp(x3)+exp(x1)+half*(ppt3-ppt1)) - two*x(i)*t +      &
            two*t**2
          u(2,i) = (exp(x3)-exp(x1)+half*(ppt3+ppt1)) - two*x(i)*t + x(i)**2 + &
            5.0_nag_wp*t**2
        End Do
        Return
      End Subroutine exact
    End Module d03prfe_mod
    Program d03prfe

!     D03PRF Example Main Program

!     .. Use Statements ..
      Use d03prfe_mod, Only: bndary, exact, itrace, monitf, nin, nleft, nout,  &
                             npde, nv, nxfix, nxi, pdedef, uvinit
      Use nag_library, Only: d03pek, d03prf, d03pzf, nag_wp
!     .. Implicit None Statement ..
      Implicit None
!     .. Local Scalars ..
      Real (Kind=nag_wp)               :: con, dxmesh, tout, trmesh, ts,       &
                                          xratio
      Integer                          :: i, ifail, ind, intpts, ipminf, it,   &
                                          itask, itol, itype, lenode, lisave,  &
                                          lrsave, neqn, npts, nrmesh, nwkres
      Logical                          :: remesh, theta
      Character (1)                    :: laopt, norm
!     .. Local Arrays ..
      Real (Kind=nag_wp)               :: algopt(30), atol(1), rtol(1),        &
                                          xfix(nxfix), xi(nxi)
      Real (Kind=nag_wp), Allocatable  :: rsave(:), u(:), ue(:,:),             &
                                          uout(:,:,:), x(:), xout(:)
      Integer, Allocatable             :: isave(:)
!     .. Intrinsic Procedures ..
      Intrinsic                        :: real
!     .. Executable Statements ..
      Write (nout,*) 'D03PRF Example Program Results'
!     Skip heading in data file
      Read (nin,*)
      Read (nin,*) npts, intpts, itype
      lisave = 25 + nxfix
      neqn = npde*npts + nv
      nwkres = npde*(npts+21+3*npde) + 7*npts + nxfix + 3
      lenode = 11*neqn + 50
      lrsave = neqn*neqn + neqn + nwkres + lenode

      Allocate (rsave(lrsave),u(npde*npts+nv),ue(npde,npts),                   &
        uout(npde,intpts,itype),x(npts),xout(intpts),isave(lisave))
      Read (nin,*) itol
      Read (nin,*) atol(1), rtol(1)

!     Set remesh parameters
      remesh = .True.
      nrmesh = 3
      dxmesh = 0.0_nag_wp
      con = 5.0_nag_wp/real(npts-1,kind=nag_wp)
      xratio = 1.2_nag_wp
      ipminf = 0

!     Initialize mesh
      Do i = 1, npts
        x(i) = real(i-1,kind=nag_wp)/real(npts-1,kind=nag_wp)
      End Do

      Read (nin,*) xout(1:intpts)
      Read (nin,*) norm, laopt
      ind = 0
      itask = 1

!     Set theta to .TRUE. if the Theta integrator is required
      theta = .False.
      algopt(1:30) = 0.0_nag_wp
      If (theta) Then
        algopt(1) = 2.0_nag_wp
        algopt(6) = 2.0_nag_wp
        algopt(7) = 1.0_nag_wp
      End If

!     Loop over output value of t
      ts = 0.0_nag_wp
      tout = 0.0_nag_wp

      Do it = 1, 5
        tout = 0.05_nag_wp*real(it,kind=nag_wp)

!       ifail: behaviour on error exit
!              =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
        ifail = 0
        Call d03prf(npde,ts,tout,pdedef,bndary,uvinit,u,npts,x,nleft,nv,       &
          d03pek,nxi,xi,neqn,rtol,atol,itol,norm,laopt,algopt,remesh,nxfix,    &
          xfix,nrmesh,dxmesh,trmesh,ipminf,xratio,con,monitf,rsave,lrsave,     &
          isave,lisave,itask,itrace,ind,ifail)

        If (it==1) Then
          Write (nout,99996) atol, npts
          Write (nout,99999) nrmesh
          Write (nout,99998) xout(1:intpts)
        End If

!       Interpolate at output points ..
        ifail = 0
        Call d03pzf(npde,0,u,npts,x,xout,intpts,itype,uout,ifail)

!       Check against exact solution ..
        Call exact(ts,npde,intpts,xout,ue)

        Write (nout,99997) ts
        Write (nout,99994) uout(1,1:intpts,1)
        Write (nout,99993) ue(1,1:intpts)
        Write (nout,99992) uout(2,1:intpts,1)
        Write (nout,99991) ue(2,1:intpts)

      End Do
      Write (nout,99995) isave(1), isave(2), isave(3), isave(5)

99999 Format (' Remeshing every ',I3,' time steps',/)
99998 Format (' X        ',5F10.4,/)
99997 Format (' T = ',F6.3)
99996 Format (/,/,'  Accuracy requirement =',E10.3,' Number of points = ',I3,  &
        /)
99995 Format (' Number of integration steps in time = ',I6,/,' Number o',      &
        'f function evaluations = ',I6,/,' Number of Jacobian eval',           &
        'uations =',I6,/,' Number of iterations = ',I6)
99994 Format (' Approx U1',5F10.4)
99993 Format (' Exact  U1',5F10.4)
99992 Format (' Approx U2',5F10.4)
99991 Format (' Exact  U2',5F10.4,/)
    End Program d03prfe