NAG Library Manual, Mark 29
Interfaces:  FL   CL   CPP   AD 

NAG FL Interface Introduction
Example description

 E02ADF Example Program Results

 Degree   0   R.M.S. residual =    0.41E+01

   J  Chebyshev coeff A(J)
   1        12.1740

 Degree   1   R.M.S. residual =    0.43E+01

   J  Chebyshev coeff A(J)
   1        12.2954
   2         0.2740

 Degree   2   R.M.S. residual =    0.17E+01

   J  Chebyshev coeff A(J)
   1        20.7345
   2         6.2016
   3         8.1876

 Degree   3   R.M.S. residual =    0.68E-01

   J  Chebyshev coeff A(J)
   1        24.1429
   2         9.4065
   3        10.8400
   4         3.0589

 Polynomial approximation and residuals for degree   3

   R   Abscissa     Weight   Ordinate  Polynomial  Residual
   1     1.0000     1.0000    10.4000    10.4461   0.46E-01
         1.5500                           9.3106
   2     2.1000     1.0000     7.9000     7.7977  -0.10E+00
         2.6000                           6.2555
   3     3.1000     1.0000     4.7000     4.7025   0.25E-02
         3.5000                           3.5488
   4     3.9000     1.0000     2.5000     2.5533   0.53E-01
         4.4000                           1.6435
   5     4.9000     1.0000     1.2000     1.2390   0.39E-01
         5.3500                           1.4257
   6     5.8000     0.8000     2.2000     2.2425   0.42E-01
         6.1500                           3.3803
   7     6.5000     0.8000     5.1000     5.0116  -0.88E-01
         6.8000                           6.8400
   8     7.1000     0.7000     9.2000     9.0982  -0.10E+00
         7.4500                          12.3171
   9     7.8000     0.5000    16.1000    16.2123   0.11E+00
         8.1000                          20.1266
  10     8.4000     0.3000    24.5000    24.6048   0.10E+00
         8.7000                          29.6779
  11     9.0000     0.2000    35.3000    35.3769   0.77E-01