/* nag_correg_robustm_wts (g02hbc) Example Program.
*
* Copyright 2023 Numerical Algorithms Group.
*
* Mark 29.3, 2023.
*/
#include <math.h>
#include <nag.h>
#include <stdio.h>
#ifdef __cplusplus
extern "C" {
#endif
static double NAG_CALL ucv(double t, Nag_Comm *comm);
#ifdef __cplusplus
}
#endif
int main(void) {
/* Scalars */
double bd, bl, tol;
Integer exit_status, i, j, k, l1, l2, m, maxit, mm, n, nit, nitmon;
Integer pdx;
NagError fail;
Nag_OrderType order;
Nag_Comm comm;
/* Arrays */
static double ruser[1] = {-1.0};
double *a = 0, *x = 0, *z = 0;
#ifdef NAG_COLUMN_MAJOR
#define X(I, J) x[(J - 1) * pdx + I - 1]
order = Nag_ColMajor;
#else
#define X(I, J) x[(I - 1) * pdx + J - 1]
order = Nag_RowMajor;
#endif
INIT_FAIL(fail);
exit_status = 0;
printf("nag_correg_robustm_wts (g02hbc) Example Program Results\n");
/* For communication with user-supplied functions: */
comm.user = ruser;
/* Skip heading in data file */
scanf("%*[^\n] ");
/* Read in the dimensions of X */
scanf("%" NAG_IFMT "%" NAG_IFMT "%*[^\n] ", &n, &m);
/* Allocate memory */
if (!(a = NAG_ALLOC(m * (m + 1) / 2, double)) ||
!(x = NAG_ALLOC(n * m, double)) || !(z = NAG_ALLOC(n, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
#ifdef NAG_COLUMN_MAJOR
pdx = n;
#else
pdx = m;
#endif
/* Read in the X matrix */
for (i = 1; i <= n; ++i) {
for (j = 1; j <= m; ++j)
scanf("%lf", &X(i, j));
scanf("%*[^\n] ");
}
/* Read in the initial value of A */
mm = (m + 1) * m / 2;
for (j = 1; j <= mm; ++j)
scanf("%lf", &a[j - 1]);
scanf("%*[^\n] ");
/* Set the values remaining parameters */
bl = 0.9;
bd = 0.9;
maxit = 50;
tol = 5e-5;
/* Change nitmon to a positive value if monitoring information
* is required
*/
nitmon = 0;
/* nag_correg_robustm_wts (g02hbc).
* Robust regression, compute weights for use with
* nag_correg_robustm_user (g02hdc)
*/
nag_correg_robustm_wts(order, ucv, n, m, x, pdx, a, z, bl, bd, tol, maxit,
nitmon, 0, &nit, &comm, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_correg_robustm_wts (g02hbc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
printf("nag_correg_robustm_wts (g02hbc) required %4" NAG_IFMT
" iterations to "
"converge\n\n",
nit);
printf("Matrix A\n");
l2 = 0;
for (j = 1; j <= m; ++j) {
l1 = l2 + 1;
l2 += j;
for (k = l1; k <= l2; ++k)
printf("%9.4f%s", a[k - 1], k % 6 == 0 || k == l2 ? "\n" : " ");
}
printf("\n");
printf("Vector Z\n");
for (i = 1; i <= n; ++i)
printf("%9.4f\n", z[i - 1]);
/* Calculate Krasker-Welsch weights */
printf("\n");
printf("Vector of weights\n");
for (i = 1; i <= n; ++i) {
z[i - 1] = 1.0 / z[i - 1];
printf("%9.4f\n", z[i - 1]);
}
END:
NAG_FREE(a);
NAG_FREE(x);
NAG_FREE(z);
return exit_status;
}
static double NAG_CALL ucv(double t, Nag_Comm *comm) {
/* Scalars */
double pc, pd, q, q2;
double ret_val;
/* ucv function for Krasker-Welsch weights */
if (comm->user[0] == -1.0) {
printf("(User-supplied callback ucv, first invocation.)\n");
comm->user[0] = 0.0;
}
ret_val = 1.0;
if (t != 0.0) {
q = 2.5 / t;
q2 = q * q;
/* nag_specfun_cdf_normal (s15abc).
* Cumulative Normal distribution function P(x)
*/
pc = nag_specfun_cdf_normal(q);
/* nag_machine_real_smallest (x02akc).
* The smallest positive model number
*/
if (q2 < -log(nag_machine_real_smallest))
/* nag_math_pi (x01aac).
* pi
*/
pd = exp(-q2 / 2.0) / sqrt(nag_math_pi * 2.0);
else
pd = 0.0;
ret_val = (pc * 2.0 - 1.0) * (1.0 - q2) + q2 - q * 2.0 * pd;
}
return ret_val;
}