/* nag_blast_zgemm (f16zac) Example Program.
*
* Copyright 2023 Numerical Algorithms Group.
*
* Mark 29.3, 2023.
*/
#include <nag.h>
#include <stdio.h>
int main(void) {
/* Scalars */
Complex alpha, beta;
Integer exit_status, i, j, k, m, n, pda, pdb, pdc;
/* Arrays */
Complex *a = 0, *b = 0, *c = 0;
char nag_enum_arg[40];
/* Nag Types */
NagError fail;
Nag_OrderType order;
Nag_TransType transa;
Nag_TransType transb;
#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J - 1) * pda + I - 1]
#define B(I, J) b[(J - 1) * pdb + I - 1]
#define C(I, J) c[(J - 1) * pdc + I - 1]
order = Nag_ColMajor;
#else
#define A(I, J) a[(I - 1) * pda + J - 1]
#define B(I, J) b[(I - 1) * pdb + J - 1]
#define C(I, J) c[(I - 1) * pdc + J - 1]
order = Nag_RowMajor;
#endif
exit_status = 0;
INIT_FAIL(fail);
printf("nag_blast_zgemm (f16zac) Example Program Results\n\n");
/* Skip heading in data file */
scanf("%*[^\n] ");
/* Read the problem dimensions */
scanf("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%*[^\n] ", &m, &n, &k);
/* Read the transpose parameters */
scanf("%39s%*[^\n] ", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/
transa = (Nag_TransType)nag_enum_name_to_value(nag_enum_arg);
scanf("%39s%*[^\n] ", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/
transb = (Nag_TransType)nag_enum_name_to_value(nag_enum_arg);
/* Read scalar parameters */
scanf(" ( %lf , %lf ) ( %lf , %lf )%*[^\n] ", &alpha.re, &alpha.im, &beta.re,
&beta.im);
#ifdef NAG_COLUMN_MAJOR
pdc = m;
if (transa == Nag_NoTrans && transb == Nag_NoTrans) {
pda = m;
pdb = k;
} else if ((transa == Nag_Trans || transa == Nag_ConjTrans) &&
transb == Nag_NoTrans) {
pda = k;
pdb = k;
} else if (transa == Nag_NoTrans &&
(transb == Nag_Trans || transb == Nag_ConjTrans)) {
pda = m;
pdb = n;
} else {
pda = k;
pdb = n;
}
#else
pdc = n;
if (transa == Nag_NoTrans && transb == Nag_NoTrans) {
pda = k;
pdb = n;
} else if ((transa == Nag_Trans || transa == Nag_ConjTrans) &&
transb == Nag_NoTrans) {
pda = m;
pdb = n;
} else if (transa == Nag_NoTrans &&
(transb == Nag_Trans || transb == Nag_ConjTrans)) {
pda = k;
pdb = k;
} else {
pda = m;
pdb = k;
}
#endif
if (m > 0 && n > 0) {
/* Allocate memory */
if (!(a = NAG_ALLOC(m * k, Complex)) || !(b = NAG_ALLOC(n * k, Complex)) ||
!(c = NAG_ALLOC(m * n, Complex))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
} else {
printf("Invalid m, n or k\n");
exit_status = 1;
return exit_status;
}
/* Input matrix A */
if (transa == Nag_NoTrans) {
for (i = 1; i <= m; ++i) {
for (j = 1; j <= k; ++j)
scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
}
scanf("%*[^\n] ");
} else {
for (i = 1; i <= k; ++i) {
for (j = 1; j <= m; ++j)
scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
}
scanf("%*[^\n] ");
}
/* Input matrix B */
if (transb == Nag_NoTrans) {
for (i = 1; i <= k; ++i) {
for (j = 1; j <= n; ++j)
scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
}
scanf("%*[^\n] ");
} else {
for (i = 1; i <= n; ++i) {
for (j = 1; j <= k; ++j)
scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
}
scanf("%*[^\n] ");
}
/* Input matrix C */
for (i = 1; i <= m; ++i) {
for (j = 1; j <= n; ++j)
scanf(" ( %lf , %lf )", &C(i, j).re, &C(i, j).im);
}
scanf("%*[^\n] ");
/* nag_blast_zgemm (f16zac).
* Complex matrix-matrix multiply.
*
*/
nag_blast_zgemm(order, transa, transb, m, n, k, alpha, a, pda, b, pdb, beta,
c, pdc, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_blast_zgemm.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Print result */
/* nag_file_print_matrix_complex_gen (x04dac).
* Print Complex general matrix (easy-to-use)
*/
fflush(stdout);
nag_file_print_matrix_complex_gen(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
m, n, c, pdc, "Matrix Matrix Product", 0,
&fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_file_print_matrix_complex_gen (x04dac).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(c);
return exit_status;
}