Program f12fgfe
! F12FGF Example Program Text
! Mark 29.3 Release. NAG Copyright 2023.
! .. Use Statements ..
Use nag_library, Only: daxpy, dgbmv, dnrm2, f12fff, f12fgf, nag_wp, &
x04abf, x04caf
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: inc1 = 1, iset = 1, nin = 5, &
nout = 6
! .. Local Scalars ..
Real (Kind=nag_wp) :: h2, sigma
Integer :: i, idiag, ifail, isub, isup, j, kl, &
ku, lcomm, ldab, ldmb, ldv, licomm, &
lo, n, nconv, ncv, nev, nx, outchn
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ab(:,:), ax(:), comm(:), d(:), &
d_print(:,:), resid(:), v(:,:)
Real (Kind=nag_wp) :: mb(0)
Integer, Allocatable :: icomm(:)
! .. Intrinsic Procedures ..
Intrinsic :: abs, int, max, real
! .. Executable Statements ..
Write (nout,*) 'F12FGF Example Program Results'
Write (nout,*)
! Skip heading in data file
Read (nin,*)
Read (nin,*) nx, nev, ncv
n = nx*nx
! Initialize communication arrays.
! Query the required sizes of the communication arrays.
licomm = -1
lcomm = -1
Allocate (icomm(max(1,licomm)),comm(max(1,lcomm)))
ifail = 0
Call f12fff(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)
licomm = icomm(1)
lcomm = int(comm(1))
Deallocate (icomm,comm)
Allocate (icomm(max(1,licomm)),comm(max(1,lcomm)))
ifail = 0
Call f12fff(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)
! Construct the matrix A in banded form and store in AB.
! KU, KL are number of superdiagonals and subdiagonals within
! the band of matrices A and M.
kl = nx
ku = nx
ldab = 2*kl + ku + 1
Allocate (ab(ldab,n))
! Zero out AB.
ab(1:ldab,1:n) = 0.0_nag_wp
! Main diagonal of A.
h2 = one/real((nx+1)*(nx+1),kind=nag_wp)
idiag = kl + ku + 1
ab(idiag,1:n) = 4.0_nag_wp/h2
! First subdiagonal and superdiagonal of A.
isup = kl + ku
isub = kl + ku + 2
Do i = 1, nx
lo = (i-1)*nx
Do j = lo + 1, lo + nx - 1
ab(isup,j+1) = -one/h2
ab(isub,j) = -one/h2
End Do
End Do
! KL-th subdiagonal and KU-th superdiagonal.
isup = kl + 1
isub = 2*kl + ku + 1
Do i = 1, nx - 1
lo = (i-1)*nx
Do j = lo + 1, lo + nx
ab(isup,nx+j) = -one/h2
ab(isub,j) = -one/h2
End Do
End Do
! Find eigenvalues of largest magnitude and the corresponding
! eigenvectors.
ldmb = 0
ldv = n
Allocate (d(ncv),v(ldv,ncv+1),resid(n))
ifail = -1
Call f12fgf(kl,ku,ab,ldab,mb,ldmb,sigma,nconv,d,v,ldv,resid,v,ldv,comm, &
icomm,ifail)
If (ifail/=0) Then
Go To 100
End If
! Compute the residual norm ||A*x - lambda*x||.
Allocate (d_print(nconv,2),ax(n))
d_print(1:nconv,1) = d(1:nconv)
Do j = 1, nconv
! The NAG name equivalent of dgbmv is f06pbf
Call dgbmv('N',n,n,kl,ku,one,ab(kl+1,1),ldab,v(1,j),inc1,zero,ax,inc1)
! The NAG name equivalent of daxpy is f06ecf
Call daxpy(n,-d_print(j,1),v(1,j),inc1,ax,inc1)
! The NAG name equivalent of dnrm2 is f06ejf
d_print(j,2) = dnrm2(n,ax,1)
End Do
d_print(1:nconv,2) = d_print(1:nconv,2)/abs(d_print(1:nconv,1))
Write (nout,*)
Flush (nout)
outchn = nout
Call x04abf(iset,outchn)
ifail = 0
Call x04caf('G','N',nconv,2,d_print,nconv,' Ritz values and residuals', &
ifail)
100 Continue
End Program f12fgfe