Program f12apfe
! F12APF Example Program Text
! Mark 29.3 Release. NAG Copyright 2023.
! .. Use Statements ..
Use nag_library, Only: dznrm2, f12anf, f12apf, f12aqf, f12arf, f12asf, &
nag_wp, zgttrf, zgttrs
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Complex (Kind=nag_wp), Parameter :: one = (1.0_nag_wp,0.0_nag_wp)
Complex (Kind=nag_wp), Parameter :: two = (2.0_nag_wp,0.0_nag_wp)
Integer, Parameter :: imon = 0, nerr = 6, nin = 5, &
nout = 6
! .. Local Scalars ..
Complex (Kind=nag_wp) :: h, h2, rho, s, s1, s2, s3, sigma
Integer :: ifail, info, irevcm, j, lcomm, ldv, &
licomm, n, nconv, ncv, nev, niter, &
nshift, nx
! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: comm(:), d(:,:), dd(:), dl(:), &
du(:), du2(:), mx(:), resid(:), &
v(:,:), x(:)
Integer, Allocatable :: icomm(:), ipiv(:)
! .. Intrinsic Procedures ..
Intrinsic :: cmplx, int, max
! .. Executable Statements ..
Write (nout,*) 'F12APF Example Program Results'
Write (nout,*)
! Skip heading in data file
Read (nin,*)
Read (nin,*) nx, nev, ncv
n = nx*nx
! Initialize communication arrays.
! Query the required sizes of the communication arrays.
licomm = -1
lcomm = -1
Allocate (icomm(max(1,licomm)),comm(max(1,lcomm)))
ifail = 0
Call f12anf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)
licomm = icomm(1)
lcomm = int(comm(1))
Deallocate (icomm,comm)
Allocate (icomm(max(1,licomm)),comm(max(1,lcomm)))
ifail = 0
Call f12anf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)
! Set the mode.
ifail = 0
Call f12arf('SHIFTED INVERSE',icomm,comm,ifail)
sigma = cmplx(0,kind=nag_wp)
rho = (10.0_nag_wp,0.0_nag_wp)
h = one/cmplx(n+1,kind=nag_wp)
h2 = h*h
s = rho/two
s1 = -one/h2 - s/h
s2 = two/h2 - sigma
s3 = -one/h2 + s/h
Allocate (dl(n-1),dd(n),du(n-1),du2(n-2),ipiv(n))
dl(1:n-1) = s1
dd(1:n-1) = s2
du(1:n-1) = s3
dd(n) = s2
! The NAG name equivalent of zgttrf is f07crf
Call zgttrf(n,dl,dd,du,du2,ipiv,info)
If (info/=0) Then
Write (nerr,99999) info
Go To 110
End If
ldv = n
Allocate (resid(n),v(ldv,ncv),x(n),mx(n),d(ncv,2))
irevcm = 0
ifail = -1
100 Continue
Call f12apf(irevcm,resid,v,ldv,x,mx,nshift,comm,icomm,ifail)
If (irevcm/=5) Then
If (irevcm==-1 .Or. irevcm==1) Then
! Perform x <--- OP*x = inv[A-SIGMA*I]*x
! The NAG name equivalent of zgttrs is f07csf
Call zgttrs('N',n,1,dl,dd,du,du2,ipiv,x,n,info)
If (info/=0) Then
Write (nerr,99998) info
Go To 110
End If
Else If (irevcm==4 .And. imon/=0) Then
! Output monitoring information
Call f12asf(niter,nconv,d,d(1,2),icomm,comm)
! The NAG name equivalent of dznrm2 is f06jjf
Write (6,99997) niter, nconv, dznrm2(nev,d(1,2),1)
End If
Go To 100
End If
If (ifail==0) Then
! Post-Process using F12AQF to compute eigenvalues/vectors.
ifail = 0
Call f12aqf(nconv,d,v,ldv,sigma,resid,v,ldv,comm,icomm,ifail)
Write (nout,99996) nconv
Do j = 1, nconv
Write (nout,99995) j, d(j,1)
End Do
End If
110 Continue
99999 Format (1X,'** Error status returned by ZGTTRF, INFO =',I12)
99998 Format (1X,'** Error status returned by ZGTTRS, INFO =',I12)
99997 Format (1X,'Iteration',1X,I3,', No. converged =',1X,I3,', norm o', &
'f estimates =',E16.8)
99996 Format (1X,/,' The ',I4,' Ritz values of smallest magnitude are:',/)
99995 Format (1X,I8,5X,'( ',F12.4,' , ',F12.4,' )')
End Program f12apfe