/* nag_sparse_real_symm_solve_ichol (f11jcc) Example Program.
*
* Copyright 2023 Numerical Algorithms Group.
*
* Mark 29.3, 2023.
*
*/
#include <nag.h>
#include <stdio.h>
int main(void) {
double dtol;
double *a = 0, *b = 0;
double *x = 0;
double rnorm, dscale;
double tol;
Integer exit_status = 0;
Integer *icol = 0;
Integer *ipiv = 0, nnzc, *irow = 0, *istr = 0;
Integer i;
Integer n;
Integer lfill, npivm;
Integer maxitn;
Integer itn;
Integer nnz;
Integer num;
char nag_enum_arg[40];
Nag_SparseSym_Method method;
Nag_SparseSym_Piv pstrat;
Nag_SparseSym_Fact mic;
Nag_Sparse_Comm comm;
NagError fail;
INIT_FAIL(fail);
printf("nag_sparse_real_symm_solve_ichol (f11jcc) Example Program Results\n");
/* Skip heading in data file */
scanf(" %*[^\n]");
/* Read algorithmic parameters */
scanf("%" NAG_IFMT "%*[^\n]", &n);
scanf("%" NAG_IFMT "%*[^\n]", &nnz);
scanf("%" NAG_IFMT "%lf%*[^\n]", &lfill, &dtol);
scanf("%39s%*[^\n]", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/
method = (Nag_SparseSym_Method)nag_enum_name_to_value(nag_enum_arg);
scanf("%39s%lf%*[^\n]", nag_enum_arg, &dscale);
mic = (Nag_SparseSym_Fact)nag_enum_name_to_value(nag_enum_arg);
scanf("%39s%*[^\n]", nag_enum_arg);
pstrat = (Nag_SparseSym_Piv)nag_enum_name_to_value(nag_enum_arg);
scanf("%lf%" NAG_IFMT "%*[^\n]", &tol, &maxitn);
/* Read the matrix a */
/* Allocate memory */
num = 2 * nnz;
irow = NAG_ALLOC(num, Integer);
icol = NAG_ALLOC(num, Integer);
a = NAG_ALLOC(num, double);
b = NAG_ALLOC(n, double);
x = NAG_ALLOC(n, double);
istr = NAG_ALLOC(n + 1, Integer);
ipiv = NAG_ALLOC(num, Integer);
if (!irow || !icol || !a || !x || !istr || !ipiv) {
printf("Allocation failure\n");
return EXIT_FAILURE;
}
for (i = 1; i <= nnz; ++i)
scanf("%lf%" NAG_IFMT "%" NAG_IFMT "%*[^\n]", &a[i - 1], &irow[i - 1],
&icol[i - 1]);
/* Read right-hand side vector b and initial approximate solution x */
for (i = 1; i <= n; ++i)
scanf("%lf", &b[i - 1]);
scanf(" %*[^\n]");
for (i = 1; i <= n; ++i)
scanf("%lf", &x[i - 1]);
scanf("%*[^\n]");
/* Calculate incomplete Cholesky factorization */
/* nag_sparse_real_symm_precon_ichol (f11jac).
* Incomplete Cholesky factorization (symmetric)
*/
nag_sparse_real_symm_precon_ichol(n, nnz, &a, &num, &irow, &icol, lfill, dtol,
mic, dscale, pstrat, ipiv, istr, &nnzc,
&npivm, &comm, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_sparse_real_symm_precon_ichol (f11jac).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
/* Solve Ax = b */
/* nag_sparse_real_symm_solve_ichol (f11jcc).
* Solver with incomplete Cholesky preconditioning
* (symmetric)
*/
nag_sparse_real_symm_solve_ichol(method, n, nnz, a, num, irow, icol, ipiv,
istr, b, tol, maxitn, x, &rnorm, &itn, &comm,
&fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_sparse_real_symm_solve_ichol (f11jcc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf(" %s%10" NAG_IFMT "%s\n", "Converged in", itn, " iterations");
printf(" %s%16.3e\n", "Final residual norm =", rnorm);
/* Output x */
for (i = 1; i <= n; ++i)
printf(" %16.4e\n", x[i - 1]);
END:
NAG_FREE(irow);
NAG_FREE(icol);
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(x);
NAG_FREE(ipiv);
NAG_FREE(istr);
return exit_status;
}