Program f08kwfe
! F08KWF Example Program Text
! Mark 29.3 Release. NAG Copyright 2023.
! .. Use Statements ..
Use nag_library, Only: ddisna, nag_wp, x02ajf, x04daf, zgesvj
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, serrbd
Integer :: i, ifail, info, j, lda, ldv, lrwork, &
lwork, m, n
! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), cwork(:), v(:,:)
Real (Kind=nag_wp), Allocatable :: rcondu(:), rcondv(:), rwork(:), &
sva(:)
! .. Intrinsic Procedures ..
Intrinsic :: abs, max, nint
! .. Executable Statements ..
Write (nout,*) 'F08KWF Example Program Results'
Write (nout,*)
Flush (nout)
! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
ldv = n
lwork = n + m
lrwork = max(6,n)
Allocate (a(lda,n),rcondu(m),rcondv(m),sva(n),v(ldv,n),cwork(lwork), &
rwork(lrwork))
! Read the m by n matrix A from data file
Read (nin,*)((a(i,j),j=1,n),i=1,m)
! Compute the singular values and left and right singular vectors
! of A (A = U*S*V, m.ge.n)
! The NAG name equivalent of zgesvj is f08kwf
Call zgesvj('G','U','V',m,n,a,lda,sva,0,v,ldv,cwork,lwork,rwork,lrwork, &
info)
If (info==0) Then
! Compute the approximate error bound for the computed singular values
! using the 2-norm, s(1) = norm(A), and machine precision, eps.
eps = x02ajf()
serrbd = eps*sva(1)
! Print solution
Write (nout,*) 'Singular values'
Write (nout,99999)(sva(j),j=1,n)
If (abs(rwork(1)-1.0_nag_wp)>eps) Then
Write (nout,99996) 'Values need scaling by factor = ', rwork(1)
End If
Write (nout,*)
Flush (nout)
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call x04daf('General',' ',m,n,a,lda,'Left singular vectors',ifail)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04daf('General',' ',n,n,v,ldv,'Right singular vectors',ifail)
! Call DDISNA (F08FLF) to estimate reciprocal condition
! numbers for the singular vectors
Call ddisna('Left',m,n,sva,rcondu,info)
Call ddisna('Right',m,n,sva,rcondv,info)
! Print the approximate error bounds for the singular values
! and vectors
Write (nout,'(/1X,A)') &
'Error estimates (as multiples of machine precision):'
Write (nout,'(/1X,A)') ' for the singular values'
Write (nout,99998) nint(serrbd/x02ajf())
Write (nout,'(/1X,A)') ' for left singular vectors'
Write (nout,99998)(nint(serrbd/rcondu(i)/x02ajf()),i=1,n)
Write (nout,'(/1X,A)') ' for right singular vectors'
Write (nout,99998)(nint(serrbd/rcondv(i)/x02ajf()),i=1,n)
Else
Write (nout,99997) 'Failure in ZGESVJ. INFO =', info
End If
99999 Format (3X,(8F8.4))
99998 Format (4X,6I4)
99997 Format (1X,A,I4)
99996 Format (/,1X,A,1P,E13.5)
End Program f08kwfe