Program f08hnfe
! F08HNF Example Program Text
! Mark 29.3 Release. NAG Copyright 2023.
! .. Use Statements ..
Use nag_library, Only: ddisna, dznrm2, nag_wp, x02ajf, x04daf, zhbev
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = 'U'
! .. Local Scalars ..
Complex (Kind=nag_wp) :: scal
Real (Kind=nag_wp) :: eerrbd, eps
Integer :: i, ifail, info, j, k, kd, ldab, ldz, &
n
! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ab(:,:), work(:), z(:,:)
Real (Kind=nag_wp), Allocatable :: rcondz(:), rwork(:), w(:), zerrbd(:)
! .. Intrinsic Procedures ..
Intrinsic :: abs, conjg, max, maxloc, min
! .. Executable Statements ..
Write (nout,*) 'F08HNF Example Program Results'
Write (nout,*)
! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd
ldab = kd + 1
ldz = n
Allocate (ab(ldab,n),work(n),z(ldz,n),rcondz(n),rwork(3*n-2),w(n), &
zerrbd(n))
! Read the upper or lower triangular part of the symmetric band
! matrix A from data file
If (uplo=='U') Then
Read (nin,*)((ab(kd+1+i-j,j),j=i,min(n,i+kd)),i=1,n)
Else If (uplo=='L') Then
Read (nin,*)((ab(1+i-j,j),j=max(1,i-kd),i),i=1,n)
End If
! Solve the band Hermitian eigenvalue problem
! The NAG name equivalent of zhbev is f08hnf
Call zhbev('Vectors',uplo,n,kd,ab,ldab,w,z,ldz,work,rwork,info)
If (info==0) Then
! Print solution
Write (nout,*) 'Eigenvalues'
Write (nout,99999) w(1:n)
Flush (nout)
! Normalize the eigenvectors, largest element real
Do i = 1, n
rwork(1:n) = abs(z(1:n,i))
k = maxloc(rwork(1:n),1)
scal = conjg(z(k,i))/abs(z(k,i))/dznrm2(n,z(1,i),1)
z(1:n,i) = z(1:n,i)*scal
End Do
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call x04daf('General',' ',n,n,z,ldz,'Eigenvectors',ifail)
! Get the machine precision, EPS and compute the approximate
! error bound for the computed eigenvalues. Note that for
! the 2-norm, max( abs(W(i)) ) = norm(A), and since the
! eigenvalues are returned in ascending order
! max( abs(W(i)) ) = max( abs(W(1)), abs(W(n)))
eps = x02ajf()
eerrbd = eps*max(abs(w(1)),abs(w(n)))
! Call DDISNA (F08FLF) to estimate reciprocal condition
! numbers for the eigenvectors
Call ddisna('Eigenvectors',n,n,w,rcondz,info)
! Compute the error estimates for the eigenvectors
Do i = 1, n
zerrbd(i) = eerrbd/rcondz(i)
End Do
! Print the approximate error bounds for the eigenvalues
! and vectors
Write (nout,*)
Write (nout,*) 'Error estimate for the eigenvalues'
Write (nout,99998) eerrbd
Write (nout,*)
Write (nout,*) 'Error estimates for the eigenvectors'
Write (nout,99998) zerrbd(1:n)
Else
Write (nout,99997) 'Failure in ZHBEV. INFO =', info
End If
99999 Format (3X,(8F8.4))
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4)
End Program f08hnfe