Program f07jbfe
! F07JBF Example Program Text
! Mark 29.3 Release. NAG Copyright 2023.
! .. Use Statements ..
Use nag_library, Only: dptsvx, nag_wp, x04caf
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, ldb, ldx, n, nrhs
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:,:), berr(:), d(:), df(:), e(:), &
ef(:), ferr(:), work(:), x(:,:)
! .. Executable Statements ..
Write (nout,*) 'F07JBF Example Program Results'
Write (nout,*)
Flush (nout)
! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
Allocate (b(ldb,nrhs),berr(nrhs),d(n),df(n),e(n-1),ef(n-1),ferr(nrhs), &
work(2*n),x(ldx,nrhs))
! Read the lower bidiagonal part of the tridiagonal matrix A and
! the right hand side b from data file
Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)
Read (nin,*)(b(i,1:nrhs),i=1,n)
! Solve the equations AX = B for X
! The NAG name equivalent of dptsvx is f07jbf
Call dptsvx('Not factored',n,nrhs,d,e,df,ef,b,ldb,x,ldx,rcond,ferr,berr, &
work,info)
If ((info==0) .Or. (info==n+1)) Then
! Print solution, error bounds and condition number
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call x04caf('General',' ',n,nrhs,x,ldx,'Solution(s)',ifail)
Write (nout,*)
Write (nout,*) 'Backward errors (machine-dependent)'
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) 'Estimated forward error bounds (machine-dependent)'
Write (nout,99999) ferr(1:nrhs)
Write (nout,*)
Write (nout,*) 'Estimate of reciprocal condition number'
Write (nout,99999) rcond
If (info==n+1) Then
Write (nout,*)
Write (nout,*) 'The matrix A is singular to working precision'
End If
Else
Write (nout,99998) 'The leading minor of order ', info, &
' is not positive definite'
End If
99999 Format (1X,1P,7E11.1)
99998 Format (1X,A,I3,A)
End Program f07jbfe