Program e04svfe
! E04SVF Example Program Text
! Mark 29.3 Release. NAG Copyright 2023.
! Compute Lovasz theta number of the given graph G on the input
! via semidefinite programming as
! min {lambda_max(H) | H is nv x nv symmetric matrix where
! h_ij=1 if ij is not an edge or if i==j}
! .. Use Statements ..
Use, Intrinsic :: iso_c_binding, Only: c_null_ptr, &
c_ptr
Use nag_library, Only: e04raf, e04rff, e04rnf, e04rzf, e04svf, e04zmf, &
e04znf, nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
Type (c_ptr) :: h
Real (Kind=nag_wp) :: rvalue
Integer :: dima, i, idblk, idx, ifail, inform, &
ivalue, j, maxe, nblk, ne, nnzasum, &
nnzu, nnzua, nnzuc, nv, nvar, optype
Character (40) :: cvalue
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), x(:)
Real (Kind=nag_wp) :: rdummy(1), rinfo(32), stats(32)
Integer, Allocatable :: blksizea(:), icola(:), irowa(:), &
nnza(:), va(:), vb(:)
Integer :: idummy(1)
! .. Intrinsic Procedures ..
Intrinsic :: trim
! .. Executable Statements ..
Write (nout,*) 'E04SVF Example Program Results'
Write (nout,*)
Flush (nout)
! Skip heading in data file.
Read (nin,*)
! Read in the number of vertices and edges of the graph.
Read (nin,*) nv
Read (nin,*) ne
Allocate (va(ne),vb(ne))
! Read in edges of the graph, accept only 1<=i<j<=nv.
maxe = ne
ne = 0
Do idx = 1, maxe
Read (nin,*) i, j
If (i>=1 .And. i<j .And. j<=nv) Then
ne = ne + 1
va(ne) = i
vb(ne) = j
End If
End Do
! Initialize handle.
h = c_null_ptr
! Number of variables (same as edges in the graph plus one).
nvar = ne + 1
! Initialize an empty problem handle with NVAR variables.
ifail = 0
Call e04raf(h,nvar,ifail)
! Add the objective function to the handle.
ifail = 0
Call e04rff(h,1,(/1/),(/1.0_nag_wp/),0,idummy,idummy,rdummy,ifail)
! Generate matrix constraint as:
! sum_{ij is edge in G} x_ij*E_ij + t*I - J >=0
! where J is the all-ones matrix.
! Just one matrix inequality.
nblk = 1
dima = nv
! Total number of nonzeros
nnzasum = ne + nv + (nv+1)*nv/2
Allocate (nnza(nvar+1),irowa(nnzasum),icola(nnzasum),a(nnzasum),x(nvar))
! A_0 is all ones matrix
nnza(1) = (nv+1)*nv/2
idx = 0
Do i = 1, nv
Do j = i, nv
idx = idx + 1
irowa(idx) = i
icola(idx) = j
a(idx) = 1.0_nag_wp
End Do
End Do
! A_1 is the identity
nnza(2) = nv
Do i = 1, nv
idx = idx + 1
irowa(idx) = i
icola(idx) = i
a(idx) = 1.0_nag_wp
End Do
! A_2, A_3, ..., A_{ne+1} match the E_ij matrices
nnza(3:ne+2) = 1
Do i = 1, ne
idx = idx + 1
irowa(idx) = va(i)
icola(idx) = vb(i)
a(idx) = 1.0_nag_wp
End Do
! Add the constraint to the problem formulation.
Allocate (blksizea(nblk))
blksizea(:) = (/dima/)
idblk = 0
ifail = 0
Call e04rnf(h,nvar,dima,nnza,nnzasum,irowa,icola,a,nblk,blksizea,idblk, &
ifail)
! Set optional arguments of the solver.
ifail = 0
Call e04zmf(h,'Initial X = Automatic',ifail)
! Pass the handle to the solver, we are not interested in
! Lagrangian multipliers.
nnzu = 0
nnzuc = 0
nnzua = 0
ifail = -1
Call e04svf(h,nvar,x,nnzu,rdummy,nnzuc,rdummy,nnzua,rdummy,rinfo,stats, &
inform,ifail)
If (ifail==0 .Or. ifail==50) Then
! Retrieve some of the settings
ifail = 0
Call e04znf(h,'Hessian Density',ivalue,rvalue,cvalue,optype,ifail)
Write (nout,*) 'The solver chose to use ', trim(cvalue), ' hessian'
ifail = 0
Call e04znf(h,'Linesearch Mode',ivalue,rvalue,cvalue,optype,ifail)
Write (nout,*) 'and ', trim(cvalue), ' as linesearch.'
Write (nout,Fmt=99999) 'Lovasz theta number of the given graph is', &
rinfo(1)
End If
! Destroy the handle.
ifail = 0
Call e04rzf(h,ifail)
99999 Format (1X,A,1X,F7.2)
End Program e04svfe