Program e04rnfe
! E04RNF Example Program Text
! Mark 29.3 Release. NAG Copyright 2023.
! Compute E-optimal experiment design via semidefinite programming,
! this can be done as follows
! max {lambda_min(A) | A = sum x_i*v_i*v_i^T, x_i>=0, sum x_i = 1}
! where v_i are given vectors.
! Use nag_library
! .. Use Statements ..
Use, Intrinsic :: iso_c_binding, Only: c_null_ptr, &
c_ptr
Use nag_library, Only: e04raf, e04rff, e04rhf, e04rjf, e04rnf, e04rzf, &
e04svf, e04zmf, nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Real (Kind=nag_wp), Parameter :: big = 1E+20_nag_wp
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
Type (c_ptr) :: h
Real (Kind=nag_wp) :: tol
Integer :: dima, i, idblk, idlc, idx, ifail, &
inform, j, k, m, nblk, nnzasum, &
nnzb, nnzc, nnzu, nnzua, nnzuc, &
nvar, p
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), bl(:), bu(:), c(:), &
v(:,:), x(:)
Real (Kind=nag_wp) :: rdummy(1), rinfo(32), stats(32)
Integer, Allocatable :: blksizea(:), icola(:), icolb(:), &
idxc(:), irowa(:), irowb(:), nnza(:)
Integer :: idummy(1)
! .. Intrinsic Procedures ..
Intrinsic :: repeat
! .. Executable Statements ..
Write (nout,*) 'E04RNF Example Program Results'
Write (nout,*)
Flush (nout)
! Skip heading in data file.
Read (nin,*)
! Read in the number of vectors and their size.
Read (nin,*) m
Read (nin,*) p
Allocate (v(p,m))
! Read in the vectors v_j.
Do j = 1, m
Read (nin,*)(v(i,j),i=1,p)
End Do
! Initialize handle.
h = c_null_ptr
! Variables of the problem will be x_1, ..., x_m (weights of the vectors)
! and t (artificial variable for minimum eigenvalue).
nvar = m + 1
! Initialize an empty problem handle with NVAR variables.
ifail = 0
Call e04raf(h,nvar,ifail)
! Add the objective function to the handle: max t.
nnzc = 1
Allocate (idxc(nnzc),c(nnzc))
idxc(:) = (/m+1/)
c(:) = (/1._nag_wp/)
ifail = 0
Call e04rff(h,nnzc,idxc,c,0,idummy,idummy,rdummy,ifail)
Allocate (bl(nvar),bu(nvar))
bl(1:m) = 0.0_nag_wp
bl(m+1) = -big
bu(1:m+1) = big
! Add simple bounds on variables, x_i>=0.
ifail = 0
Call e04rhf(h,nvar,bl,bu,ifail)
nnzb = m
Allocate (irowb(nnzb),icolb(nnzb),b(nnzb))
irowb(:) = 1
icolb(:) = (/(j,j=1,m)/)
b(:) = 1.0_nag_wp
! Add the linear constraint: sum x_i = 1.
idlc = 0
ifail = 0
Call e04rjf(h,1,(/1.0_nag_wp/),(/1.0_nag_wp/),nnzb,irowb,icolb,b,idlc, &
ifail)
! Generate matrix constraint as:
! sum_{i=1}^m x_i*v_i*v_i^T - t*I >=0
nblk = 1
dima = p
! Total number of nonzeros
nnzasum = p + m*(p+1)*p/2
Allocate (nnza(nvar+1),irowa(nnzasum),icola(nnzasum),a(nnzasum),x(nvar))
! A_0 is empty
nnza(1) = 0
! A_1, A_2, ..., A_m are v_i*v_i^T
nnza(2:m+1) = (p+1)*p/2
idx = 0
Do k = 1, m
Do i = 1, p
Do j = i, p
idx = idx + 1
irowa(idx) = i
icola(idx) = j
a(idx) = v(i,k)*v(j,k)
End Do
End Do
End Do
! A_{m+1} is the -identity
nnza(m+2) = p
Do i = 1, p
idx = idx + 1
irowa(idx) = i
icola(idx) = i
a(idx) = -1.0_nag_wp
End Do
! Add the constraint to the problem formulation.
Allocate (blksizea(nblk))
blksizea(:) = (/dima/)
idblk = 0
ifail = 0
Call e04rnf(h,nvar,dima,nnza,nnzasum,irowa,icola,a,nblk,blksizea,idblk, &
ifail)
! Set optional arguments of the solver.
ifail = 0
Call e04zmf(h,'Task = Maximize',ifail)
ifail = 0
Call e04zmf(h,'Initial X = Automatic',ifail)
! Pass the handle to the solver, we are not interested in
! Lagrangian multipliers.
nnzu = 0
nnzuc = 0
nnzua = 0
ifail = 0
Call e04svf(h,nvar,x,nnzu,rdummy,nnzuc,rdummy,nnzua,rdummy,rinfo,stats, &
inform,ifail)
! Print results
Write (nout,*)
tol = 0.00001_nag_wp
Write (nout,*) ' Weight Row of design matrix'
Write (nout,*) repeat('-',13+p*8)
Do j = 1, m
If (x(j)>tol) Then
Write (*,99999) x(j), v(1:p,j)
End If
End Do
Write (nout,99998) 'only those rows with a weight > ', tol, ' are shown'
! Destroy the handle.
ifail = 0
Call e04rzf(h,ifail)
99999 Format (1X,F7.2,5X,10(1X,F7.2))
99998 Format (1X,A,E8.1,A)
End Program e04rnfe