/* nag_opt_check_deriv2 (e04hdc) Example Program.
*
* Copyright 2023 Numerical Algorithms Group.
*
* Mark 29.3, 2023.
*
*/
#include <math.h>
#include <nag.h>
#include <stdio.h>
#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL h(Integer n, const double xc[], double fhesl[],
double fhesd[], Nag_Comm *comm);
static void NAG_CALL funct(Integer n, const double xc[], double *fc,
double gc[], Nag_Comm *comm);
#ifdef __cplusplus
}
#endif
int main(void) {
static double ruser[2] = {-1.0, -1.0};
Integer exit_status = 0, i, j, k, n;
NagError fail;
Nag_Comm comm;
double f, *g = 0, *hesd = 0, *hesl = 0, *x = 0;
INIT_FAIL(fail);
#define X(I) x[(I)-1]
#define HESL(I) hesl[(I)-1]
#define HESD(I) hesd[(I)-1]
#define G(I) g[(I)-1]
printf("nag_opt_check_deriv2 (e04hdc) Example Program Results\n\n");
/* For communication with user-supplied functions: */
comm.user = ruser;
/* Set up an arbitrary point at which to check the derivatives */
n = 4;
if (n >= 1) {
if (!(hesd = NAG_ALLOC(n, double)) ||
!(hesl = NAG_ALLOC(n * (n - 1) / 2, double)) ||
!(g = NAG_ALLOC(n, double)) || !(x = NAG_ALLOC(n, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
} else {
printf("Invalid n.\n");
exit_status = 1;
return exit_status;
}
X(1) = 1.46;
X(2) = -0.82;
X(3) = 0.57;
X(4) = 1.21;
printf("The test point is\n");
for (j = 1; j <= n; ++j)
printf("%9.4f", X(j));
printf("\n");
/* Check the 1st derivatives */
/* nag_opt_check_deriv (e04hcc).
* Derivative checker for use with nag_opt_bounds_deriv
* (e04kbc)
*/
nag_opt_check_deriv(n, funct, &X(1), &f, &G(1), &comm, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_opt_check_deriv (e04hcc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Check the 2nd derivatives */
/* nag_opt_check_deriv2 (e04hdc).
* Checks second derivatives of a user-defined function
*/
nag_opt_check_deriv2(n, funct, h, &X(1), &G(1), &HESL(1), &HESD(1), &comm,
&fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_opt_check_deriv2 (e04hdc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
printf("\n2nd derivatives are consistent with 1st derivatives.\n\n");
printf("At the test point, funct gives the function value, %13.4e\n", f);
printf("and the 1st derivatives\n");
for (j = 1; j <= n; ++j)
printf("%12.3e%s", G(j), j % 4 ? "" : "\n");
printf("\nh gives the lower triangle of the Hessian matrix\n");
printf("%12.3e\n", HESD(1));
k = 1;
for (i = 2; i <= n; ++i) {
for (j = k; j <= k + i - 2; ++j)
printf("%12.3e", HESL(j));
printf("%12.3e\n", HESD(i));
k = k + i - 1;
}
END:
NAG_FREE(hesd);
NAG_FREE(hesl);
NAG_FREE(g);
NAG_FREE(x);
return exit_status;
}
static void NAG_CALL funct(Integer n, const double xc[], double *fc,
double gc[], Nag_Comm *comm) {
/* Routine to evaluate objective function and its 1st derivatives. */
if (comm->user[0] == -1.0) {
printf("(User-supplied callback funct, first invocation.)\n");
comm->user[0] = 0.0;
}
*fc = pow(xc[0] + 10.0 * xc[1], 2.0) + 5.0 * pow(xc[2] - xc[3], 2.0) +
pow(xc[1] - 2.0 * xc[2], 4.0) + 10.0 * pow(xc[0] - xc[3], 4.0);
gc[0] = 2.0 * (xc[0] + 10.0 * xc[1]) + 40.0 * pow(xc[0] - xc[3], 3.0);
gc[1] = 20.0 * (xc[0] + 10.0 * xc[1]) + 4.0 * pow(xc[1] - 2.0 * xc[2], 3.0);
gc[2] = 10.0 * (xc[2] - xc[3]) - 8.0 * pow(xc[1] - 2.0 * xc[2], 3.0);
gc[3] = 10.0 * (xc[3] - xc[2]) - 40.0 * pow(xc[0] - xc[3], 3.0);
}
static void NAG_CALL h(Integer n, const double xc[], double fhesl[],
double fhesd[], Nag_Comm *comm) {
/* Routine to evaluate 2nd derivatives */
if (comm->user[1] == -1.0) {
printf("(User-supplied callback h, first invocation.)\n");
comm->user[1] = 0.0;
}
fhesd[0] = 2.0 + 120.0 * pow(xc[0] - xc[3], 2.0);
fhesd[1] = 200.0 + 12.0 * pow(xc[1] - 2.0 * xc[2], 2.0);
fhesd[2] = 10.0 + 48.0 * pow(xc[1] - 2.0 * xc[2], 2.0);
fhesd[3] = 10.0 + 120.0 * pow(xc[0] - xc[3], 2.0);
fhesl[0] = 20.0;
fhesl[1] = 0.0;
fhesl[2] = -24.0 * pow(xc[1] - 2.0 * xc[2], 2.0);
fhesl[3] = -120.0 * pow(xc[0] - xc[3], 2.0);
fhesl[4] = 0.0;
fhesl[5] = -10.0;
}