! E02DDF Example Program Text
! Mark 29.3 Release. NAG Copyright 2023.
Module e02ddfe_mod
! E02DDF Example Program Module:
! Parameters and User-defined Routines
! .. Use Statements ..
Use nag_library, Only: nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Accessibility Statements ..
Private
Public :: cprint
! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6
Contains
Subroutine cprint(c,ny,nx,nout)
! .. Scalar Arguments ..
Integer, Intent (In) :: nout, nx, ny
! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: c(ny-4,nx-4)
! .. Local Scalars ..
Integer :: i
! .. Executable Statements ..
Write (nout,*)
Write (nout,*) 'The B-spline coefficients:'
Write (nout,*)
Do i = 1, ny - 4
Write (nout,99999) c(i,1:(nx-4))
End Do
Return
99999 Format (1X,7F9.2)
End Subroutine cprint
End Module e02ddfe_mod
Program e02ddfe
! E02DDF Example Main Program
! .. Use Statements ..
Use e02ddfe_mod, Only: cprint, nin, nout
Use nag_library, Only: e02ddf, e02dff, nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Local Scalars ..
Real (Kind=nag_wp) :: delta, fp, s, xhi, xlo, yhi, ylo
Integer :: i, ifail, j, liwrk, lwrk, m, npx, &
npy, nx, nxest, ny, nyest, rank, u, &
v, ww
Character (1) :: start
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), f(:), fg(:), lamda(:), mu(:), &
px(:), py(:), w(:), wrk(:), x(:), &
y(:)
Integer, Allocatable :: iwrk(:)
! .. Intrinsic Procedures ..
Intrinsic :: max, min, real
! .. Executable Statements ..
Write (nout,*) 'E02DDF Example Program Results'
! Skip heading in data file
Read (nin,*)
Read (nin,*) m
nxest = m
nyest = nxest
liwrk = m + 2*(nxest-7)*(nyest-7)
u = nxest - 4
v = nyest - 4
ww = max(u,v)
lwrk = (7*u*v+25*ww)*(ww+1) + 2*(u+v+4*m) + 23*ww + 56
Allocate (x(m),y(m),f(m),w(m),lamda(nxest),mu(nyest),c((nxest-4)*(nyest- &
4)),iwrk(liwrk),wrk(lwrk))
! Input the data-points and the weights.
Do i = 1, m
Read (nin,*) x(i), y(i), f(i), w(i)
End Do
start = 'C'
Read (nin,*) s
! Determine the spline approximation.
ifail = 0
Call e02ddf(start,m,x,y,f,w,s,nxest,nyest,nx,lamda,ny,mu,c,fp,rank,wrk, &
lwrk,iwrk,liwrk,ifail)
Deallocate (wrk,iwrk)
Write (nout,*)
Write (nout,99999) 'Calling with smoothing factor S =', s, ': NX =', nx, &
', NY =', ny, ','
Write (nout,99998) 'rank deficiency =', (nx-4)*(ny-4) - rank
Write (nout,*)
Write (nout,*) ' I Knot LAMDA(I) J Knot MU(J)'
Write (nout,*)
Do j = 4, max(nx,ny) - 3
If (j<=nx-3 .And. j<=ny-3) Then
Write (nout,99996) j, lamda(j), j, mu(j)
Else If (j<=nx-3) Then
Write (nout,99996) j, lamda(j)
Else If (j<=ny-3) Then
Write (nout,99995) j, mu(j)
End If
End Do
Call cprint(c,ny,nx,nout)
Write (nout,*)
Write (nout,99997) ' Sum of squared residuals FP =', fp
If (nx==8 .And. ny==8) Then
Write (nout,*) &
' ( The spline is the least squares bi-cubic polynomial )'
End If
! Evaluate the spline on a rectangular grid at NPX*NPY points
! over the domain (XLO to XHI) x (YLO to YHI).
Read (nin,*) npx, xlo, xhi
Read (nin,*) npy, ylo, yhi
lwrk = min(4*npx+nx,4*npy+ny)
If (4*npx+nx>4*npy+ny) Then
liwrk = npy + ny - 4
Else
liwrk = npx + nx - 4
End If
Allocate (px(npx),py(npy),fg(npx*npy),wrk(lwrk),iwrk(liwrk))
delta = (xhi-xlo)/real(npx-1,kind=nag_wp)
Do i = 1, npx
px(i) = min(xlo+real(i-1,kind=nag_wp)*delta,xhi)
End Do
Do i = 1, npy
py(i) = min(ylo+real(i-1,kind=nag_wp)*delta,yhi)
End Do
ifail = 0
Call e02dff(npx,npy,nx,ny,px,py,lamda,mu,c,fg,wrk,lwrk,iwrk,liwrk,ifail)
Write (nout,*)
Write (nout,*) 'Values of computed spline:'
Write (nout,*)
Write (nout,99994) ' X', (px(i),i=1,npx)
Write (nout,*) ' Y'
Do i = npy, 1, -1
Write (nout,99993) py(i), (fg(npy*(j-1)+i),j=1,npx)
End Do
99999 Format (1X,A,1P,E13.4,A,I5,A,I5,A)
99998 Format (1X,A,I5)
99997 Format (1X,A,1P,E13.4,A)
99996 Format (1X,I16,F12.4,I11,F12.4)
99995 Format (1X,I39,F12.4)
99994 Format (1X,A,7F8.2)
99993 Format (1X,F8.2,3X,7F8.2)
End Program e02ddfe