Program e02cafe
! E02CAF Example Program Text
! Mark 29.3 Release. NAG Copyright 2023.
! .. Use Statements ..
Use nag_library, Only: e02caf, e02cbf, nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=nag_wp) :: ymax
Integer :: i, ifail, inuxp1, inuyp1, j, k, l, &
mi, mtot, n, na, nwork, r, t
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), f(:), ff(:), nux(:), nuy(:), &
w(:), work(:), x(:), xmax(:), &
xmin(:), y(:)
Integer, Allocatable :: m(:)
! .. Intrinsic Procedures ..
Intrinsic :: max, sum
! .. Executable Statements ..
Write (nout,*) 'E02CAF Example Program Results'
! Skip heading in data file
Read (nin,*)
! Input the number of lines Y = Y(I) on which data is given,
! and the required degree of fit in the X and Y directions
Read (nin,*) n, k, l
inuxp1 = 1
inuyp1 = 1
na = (k+1)*(l+1)
Allocate (a(na),m(n),y(n),xmin(n),xmax(n),nux(inuxp1),nuy(inuyp1))
! Input Y(I), the number of data points on Y = Y(I) and the
! range of X-values on this line, for I = 1,2,...N
Do i = 1, n
Read (nin,*) y(i), m(i), xmin(i), xmax(i)
End Do
mtot = sum(m(1:n))
nwork = 3*mtot + 2*n*(k+2) + 5*(1+max(k,l))
Allocate (x(mtot),f(mtot),w(mtot),ff(mtot),work(nwork))
! Input the X-values and function values, F, together with
! their weights, W.
Read (nin,*)(x(i),f(i),w(i),i=1,mtot)
! Evaluate the coefficients, A, of the fit to this set of data
ifail = 0
Call e02caf(m,n,k,l,x,y,f,w,mtot,a,na,xmin,xmax,nux,inuxp1,nuy,inuyp1, &
work,nwork,ifail)
mi = 0
Write (nout,*)
Write (nout,*) ' Data Y Data X Data F Fitted F Residual'
Write (nout,*)
Do r = 1, n
t = mi + 1
mi = mi + m(r)
ymax = y(n)
If (n==1) Then
ymax = ymax + 1.0E0_nag_wp
End If
! Evaluate the fitted polynomial at each of the data points
! on the line Y = Y(R)
ifail = 0
Call e02cbf(t,mi,k,l,x,xmin(r),xmax(r),y(r),y(1),ymax,ff,a,na,work, &
nwork,ifail)
! Output the data and fitted values on the line Y = Y(R)
Do i = t, mi
Write (nout,99999) y(r), x(i), f(i), ff(i), ff(i) - f(i)
End Do
Write (nout,*)
End Do
! Output the Chebyshev coefficients of the fit
Write (nout,*) 'Chebyshev coefficients of the fit'
Write (nout,*)
Do j = 1, k + 1
Write (nout,99998)(a(i),i=1+(j-1)*(l+1),j*(l+1))
End Do
99999 Format (3X,4F11.4,E11.2)
99998 Format (1X,6F11.4)
End Program e02cafe