/* nag_fit_dim1_cheb_con (e02agc) Example Program.
*
* Copyright 2023 Numerical Algorithms Group.
*
* Mark 29.3, 2023.
*/
#include <nag.h>
#include <stdio.h>
int main(void) {
/* Scalars */
double fiti, xmax, xmin;
Integer exit_status, i, iy, j, k, h, m, mf, n, pda, stride;
NagError fail;
Nag_OrderType order;
/* Arrays */
double *a = 0, *s = 0, *w = 0, *resid = 0, *x = 0, *xf = 0, *y = 0, *yf = 0;
Integer *p = 0;
#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J - 1) * pda + I - 1]
order = Nag_ColMajor;
#else
#define A(I, J) a[(I - 1) * pda + J - 1]
order = Nag_RowMajor;
#endif
INIT_FAIL(fail);
exit_status = 0;
printf("nag_fit_dim1_cheb_con (e02agc) Example Program Results\n");
/* Skip heading in data file */
scanf("%*[^\n] ");
while (scanf("%" NAG_IFMT "%*[^\n] ", &mf) != EOF)
{
if (mf > 0) {
/* Allocate memory for p and xf. */
if (!(p = NAG_ALLOC(mf, Integer)) || !(xf = NAG_ALLOC(mf, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read p, xf and yf arrays */
iy = 1;
n = mf;
for (i = 0; i < mf; ++i) {
scanf("%" NAG_IFMT "%lf", &p[i], &xf[i]);
h = iy + p[i] + 1;
/* We need to extend array yf as we go along */
if (!(yf = NAG_REALLOC(yf, h - 1, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
for (j = iy - 1; j < h - 1; ++j)
scanf("%lf", &yf[j]);
scanf("%*[^\n] ");
n += p[i];
iy = h;
}
scanf("%" NAG_IFMT "%*[^\n] ", &m);
if (m > 0) {
/* Allocate memory for x, y and w. */
if (!(x = NAG_ALLOC(m, double)) || !(y = NAG_ALLOC(m, double)) ||
!(w = NAG_ALLOC(m, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
for (i = 0; i < m; ++i)
scanf("%lf%lf%lf", &x[i], &y[i], &w[i]);
scanf("%*[^\n] ");
scanf("%" NAG_IFMT "%lf%lf%*[^\n] ", &k, &xmin, &xmax);
pda = k + 1;
/* Allocate arrays a, s and resid */
if (!(a = NAG_ALLOC((k + 1) * (k + 1), double)) ||
!(s = NAG_ALLOC((k + 1), double)) ||
!(resid = NAG_ALLOC(m, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* nag_fit_dim1_cheb_con (e02agc).
* Least squares polynomial fit, values and derivatives may
* be constrained, arbitrary data points
*/
nag_fit_dim1_cheb_con(order, m, k, xmin, xmax, x, y, w, mf, xf, yf, p,
a, s, &n, resid, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_fit_dim1_cheb_con (e02agc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf("\n");
printf("Degree RMS residual\n");
for (i = n; i <= k; ++i)
printf("%4" NAG_IFMT "%15.2e\n", i, s[i]);
printf("\n");
printf("Details of the fit of degree %2" NAG_IFMT "\n", k);
printf("\n");
printf(" Index Coefficient\n");
for (i = 0; i < k + 1; ++i)
printf("%6" NAG_IFMT "%11.4f\n", i, A(k + 1, i + 1));
printf("\n");
printf(" i x(i) y(i) Fit Residual\n");
for (i = 0; i < m; ++i) {
/* Note that the coefficients of polynomial are stored in the
* rows of A hence when the storage is in Nag_ColMajor order
* then stride is the first dimension of A, k + 1.
* When the storage is in Nag_RowMajor order then stride is 1.
*/
#ifdef NAG_COLUMN_MAJOR
stride = k + 1;
#else
stride = 1;
#endif
/* nag_fit_dim1_cheb_eval2 (e02akc).
* Evaluation of fitted polynomial in one variable from
* Chebyshev series form
*/
nag_fit_dim1_cheb_eval2(k, xmin, xmax, &A(k + 1, 1), stride, x[i],
&fiti, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_fit_dim1_cheb_eval2 (e02akc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf("%6" NAG_IFMT "%11.4f%11.4f%11.4f", i, x[i], y[i], fiti);
printf("%11.2e\n", fiti - y[i]);
}
}
}
}
END:
NAG_FREE(a);
NAG_FREE(s);
NAG_FREE(w);
NAG_FREE(resid);
NAG_FREE(x);
NAG_FREE(xf);
NAG_FREE(y);
NAG_FREE(yf);
NAG_FREE(p);
return exit_status;
}