/* nag_fit_dim1_cheb_glp (e02afc) Example Program.
*
* Copyright 2023 Numerical Algorithms Group.
*
* Mark 29.3, 2023.
*
*/
#include <math.h>
#include <nag.h>
#include <stdio.h>
int main(void) {
Integer exit_status = 0;
double *an = 0, d1, *f = 0, fit, pi, piby2n, *xcap = 0;
Integer i, j, n;
Integer r;
NagError fail;
INIT_FAIL(fail);
printf("nag_fit_dim1_cheb_glp (e02afc) Example Program Results \n");
/* Skip heading in data file */
scanf("%*[^\n]");
/* nag_math_pi (x01aac).
* pi
*/
pi = nag_math_pi;
while ((scanf("%" NAG_IFMT "", &n)) != EOF)
{
if (n > 0) {
if (!(an = NAG_ALLOC(n + 1, double)) || !(f = NAG_ALLOC(n + 1, double)) ||
!(xcap = NAG_ALLOC(n + 1, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
} else {
printf("Invalid n.\n");
exit_status = 1;
return exit_status;
}
piby2n = pi * 0.5 / (double)n;
for (r = 0; r < n + 1; ++r)
scanf("%lf", &f[r]);
for (r = 0; r < n + 1; ++r) {
i = r;
/* The following method of evaluating xcap = cos(pi*i/n)
* ensures that the computed value has a small relative error
* and, moreover, is bounded in modulus by unity for all
* i = 0, 1, ..., n. (It is assumed that the sine routine
* produces a result with a small relative error for values
* of the argument between -PI/4 and PI/4).
*/
if (2 * i <= n) {
d1 = sin(piby2n * i);
xcap[i] = 1.0 - d1 * d1 * 2.0;
} else if (2 * i > n * 3) {
d1 = sin(piby2n * (n - i));
xcap[i] = d1 * d1 * 2.0 - 1.0;
} else {
xcap[i] = sin(piby2n * (n - 2 * i));
}
}
/* nag_fit_dim1_cheb_glp (e02afc).
* Computes the coefficients of a Chebyshev series
* polynomial for interpolated data
*/
nag_fit_dim1_cheb_glp(n + 1, f, an, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_fit_dim1_cheb_glp (e02afc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
printf("\n Chebyshev \n");
printf(" J coefficient A(J) \n");
for (j = 0; j < n + 1; ++j)
printf(" %3" NAG_IFMT "%14.7f\n", j + 1, an[j]);
printf("\n R Abscissa Ordinate Fit \n");
for (r = 0; r < n + 1; ++r) {
/* nag_fit_dim1_cheb_eval (e02aec).
* Evaluates the coefficients of a Chebyshev series
* polynomial
*/
nag_fit_dim1_cheb_eval(n + 1, an, xcap[r], &fit, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_fit_dim1_cheb_eval (e02aec).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf(" %3" NAG_IFMT "%11.4f%11.4f%11.4f\n", r + 1, xcap[r], f[r], fit);
}
END:
NAG_FREE(an);
NAG_FREE(f);
NAG_FREE(xcap);
}
return exit_status;
}