! D05ABF Example Program Text
! Mark 29.3 Release. NAG Copyright 2023.
Module d05abfe_mod
! D05ABF Example Program Module:
! Parameters and User-defined Routines
! .. Use Statements ..
Use nag_library, Only: nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Accessibility Statements ..
Private
Public :: g, k
! .. Parameters ..
Integer, Parameter, Public :: nmax = 10, nout = 6
Contains
Function k(x,s)
! .. Function Return Value ..
Real (Kind=nag_wp) :: k
! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: w = alpha**2
! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: s, x
! .. Executable Statements ..
k = alpha/(w+(x-s)*(x-s))
Return
End Function k
Function g(x)
! .. Function Return Value ..
Real (Kind=nag_wp) :: g
! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
! .. Executable Statements ..
g = 1.0_nag_wp
Return
End Function g
End Module d05abfe_mod
Program d05abfe
! D05ABF Example Main Program
! .. Use Statements ..
Use d05abfe_mod, Only: g, k, nmax, nout
Use nag_library, Only: c06dcf, d05abf, nag_wp, x01aaf
! .. Implicit None Statement ..
Implicit None
! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, lambda, x0
Integer :: i, ifail, ldcm, lx, n, nt2p1, ss
Logical :: ev, odorev
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), chebr(:), cm(:,:), f(:), &
f1(:,:), wk(:,:), x(:)
! .. Intrinsic Procedures ..
Intrinsic :: cos, int, real
! .. Executable Statements ..
Write (nout,*) 'D05ABF Example Program Results'
odorev = .True.
ev = .True.
lambda = -0.3183_nag_wp
a = -1.0_nag_wp
b = 1.0_nag_wp
If (odorev) Then
Write (nout,*)
If (ev) Then
Write (nout,*) 'Solution is even'
ss = 2
Else
Write (nout,*) 'Solution is odd'
ss = 3
End If
x0 = 0.5_nag_wp*(a+b)
Else
ss = 1
x0 = a
End If
! Set up uniform grid to evaluate Chebyshev polynomials.
lx = int(4.000001_nag_wp*(b-x0)) + 1
Allocate (x(lx),chebr(lx))
x(1) = x0
Do i = 2, lx
x(i) = x(i-1) + 0.25_nag_wp
End Do
Do n = 5, nmax, 5
ldcm = n
nt2p1 = 2*n + 1
Allocate (c(n),cm(ldcm,ldcm),f(n),f1(ldcm,1),wk(2,nt2p1))
ifail = -1
Call d05abf(k,g,lambda,a,b,odorev,ev,n,cm,f1,wk,ldcm,nt2p1,f,c,ifail)
If (ifail==0) Then
Write (nout,*)
Write (nout,99999) 'Results for N =', n
Write (nout,*)
Write (nout,99996) 'Solution on first ', n, &
' Chebyshev points and Chebyshev coefficients'
Write (nout,*) ' I X F(I) C(I)'
Write (nout,99998)(i,cos(x01aaf(a)*real(i,kind=nag_wp)/real(2*n-1, &
kind=nag_wp)),f(i),c(i),i=1,n)
! Evaluate and print solution on uniform grid.
ifail = 0
Call c06dcf(x,lx,a,b,c,n,ss,chebr,ifail)
Write (nout,*)
Write (nout,*) 'Solution on evenly spaced grid'
Write (nout,*) ' X F(X)'
Write (nout,99997)(x(i),chebr(i),i=1,lx)
End If
Deallocate (c,cm,f,f1,wk)
End Do
Deallocate (x,chebr)
99999 Format (1X,A,I3)
99998 Format (1X,I3,2F15.5,E15.5)
99997 Format (1X,F8.4,F15.5)
99996 Format (1X,A,I2,A)
End Program d05abfe