/* nag_ode_bvp_ps_lin_cheb_eval (d02uzc) Example Program.
*
* Copyright 2023 Numerical Algorithms Group.
*
* Mark 29.3, 2023.
*/
#include <math.h>
#include <nag.h>
#ifdef __cplusplus
extern "C" {
#endif
static double NAG_CALL exact(double x);
#ifdef __cplusplus
}
#endif
int main(void) {
/* Scalars */
Integer exit_status = 0;
Integer i, k, m, n;
double a = -0.24 * nag_math_pi, b = 0.5 * nag_math_pi;
double deven, dmap, fseries, t, uerr, xeven, xmap;
double teneps = 10.0 * nag_machine_precision;
/* Arrays */
double *c = 0, *f = 0, *x = 0;
/* NAG types */
Nag_Boolean reqerr = Nag_FALSE;
NagError fail;
INIT_FAIL(fail);
printf("nag_ode_bvp_ps_lin_cheb_eval (d02uzc) Example Program Results \n\n");
/* Skip heading in data file */
scanf("%*[^\n] ");
scanf("%" NAG_IFMT "", &n);
scanf("%" NAG_IFMT "", &m);
if (!(f = NAG_ALLOC((n + 1), double)) || !(c = NAG_ALLOC((n + 1), double)) ||
!(x = NAG_ALLOC((n + 1), double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Set up Chebyshev grid:
* nag_ode_bvp_ps_lin_cgl_grid (d02ucc).
* Chebyshev Gauss-Lobatto grid generation.
*/
nag_ode_bvp_ps_lin_cgl_grid(n, a, b, x, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_ode_bvp_ps_lin_cgl_grid (d02ucc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
/* Evaluate function on grid and get interpolating Chebyshev coefficients. */
for (i = 0; i < n + 1; i++)
f[i] = exact(x[i]);
/* nag_ode_bvp_ps_lin_coeffs (d02uac).
* Coefficients of Chebyshev interpolating polynomial
* from function values on Chebyshev grid.
*/
nag_ode_bvp_ps_lin_coeffs(n, f, c, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_ode_bvp_ps_lin_coeffs (d02uac).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
/* Evaluate Chebyshev series manually by evaluating each Chebyshev
* polynomial in turn at new equispaced (m+1) grid points.
* Chebyshev series on [-1,1] map of [a,b].
*/
xmap = -1.0;
dmap = 2.0 / (double)(m - 1);
xeven = a;
deven = (b - a) / (double)(m - 1);
printf(" x_even x_map Sum\n");
uerr = 0.0;
for (i = 0; i < m; i++) {
fseries = 0.0;
for (k = 0; k < n + 1; k++) {
/* nag_ode_bvp_ps_lin_cheb_eval (d02uzc).
* Chebyshev polynomial evaluation, T_k(x).
*/
nag_ode_bvp_ps_lin_cheb_eval(k, xmap, &t, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_ode_bvp_ps_lin_cheb_eval (d02uzc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
fseries = fseries + c[k] * t;
}
uerr = MAX(uerr, fabs(fseries - exact(xeven)));
printf("%10.4f %10.4f %10.4f \n", xeven, xmap, fseries);
xmap = MIN(1.0, xmap + dmap);
xeven = xeven + deven;
}
if (reqerr) {
printf("\nError in coefficient sum is < ");
printf("%8" NAG_IFMT " ", 10 * ((Integer)(uerr / teneps) + 1));
printf(" * machine precision.\n");
}
END:
NAG_FREE(c);
NAG_FREE(f);
NAG_FREE(x);
return exit_status;
}
static double NAG_CALL exact(double x) { return x + exp(-x); }