/* nag_ode_bvp_fd_nonlin_fixedbc (d02gac) Example Program.
*
* Copyright 2023 Numerical Algorithms Group.
*
* Mark 29.3, 2023.
*
*/
#include <nag.h>
#include <stdio.h>
#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL fcn(Integer neq, double x, const double y[], double f[],
Nag_User *comm);
#ifdef __cplusplus
}
#endif
#define NEQ 3
#define MNP 40
#define U(I, J) u[(I)*tdu + J]
#define Y(I, J) y[(I)*tdy + J]
#define V(I, J) v[(I)*tdv + J]
int main(void) {
Integer exit_status = 0, i, j, k, mnp, neq, np, tdu, tdv, tdy, *v = 0;
NagError fail;
Nag_User comm;
double a, b, beta, tol, *u = 0, *x = 0, *y = 0;
INIT_FAIL(fail);
printf("nag_ode_bvp_fd_nonlin_fixedbc (d02gac) Example Program Results\n");
/* For communication with function fcn()
* assign address of beta to comm.p.
*/
comm.p = (Pointer)β
neq = NEQ;
mnp = MNP;
tol = 0.001;
np = 26;
a = 0.0;
b = 10.0;
beta = 0.0;
if (mnp >= 32 && neq >= 2) {
if (!(u = NAG_ALLOC(neq * 2, double)) || !(x = NAG_ALLOC(mnp, double)) ||
!(y = NAG_ALLOC(neq * mnp, double)) ||
!(v = NAG_ALLOC(neq * 2, Integer))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
tdu = 2;
tdy = mnp;
tdv = 2;
} else {
exit_status = 1;
return exit_status;
}
for (i = 0; i < neq; ++i)
for (j = 0; j < 2; ++j) {
U(i, j) = 0.0;
V(i, j) = 0;
}
V(2, 0) = 1;
V(0, 1) = 1;
V(2, 1) = 1;
U(1, 1) = 1.0;
U(0, 1) = b;
x[0] = a;
for (i = 2; i <= np - 1; ++i)
x[i - 1] = ((double)(np - i) * a + (double)(i - 1) * b) / (double)(np - 1);
x[np - 1] = b;
for (k = 1; k <= 2; ++k) {
printf("\nProblem with beta = %7.4f\n", beta);
/* nag_ode_bvp_fd_nonlin_fixedbc (d02gac).
* Ordinary differential equations solver, for simple
* nonlinear two-point boundary value problems, using a
* finite difference technique with deferred correction
*/
nag_ode_bvp_fd_nonlin_fixedbc(neq, fcn, a, b, u, v, mnp, &np, x, y, tol,
&comm, &fail);
if (fail.code == NE_NOERROR || fail.code == NE_CONV_ROUNDOFF) {
if (fail.code == NE_CONV_ROUNDOFF) {
printf("Error from nag_ode_bvp_fd_nonlin_fixedbc (d02gac)"
".\n%s\n",
fail.message);
exit_status = 2;
}
printf("\nSolution on final mesh of %" NAG_IFMT " points\n", np);
printf(" X Y(1) Y(2) Y(3)\n");
for (i = 0; i <= np - 1; ++i) {
printf(" %9.4f ", x[i]);
for (j = 0; j < neq; ++j)
printf(" %9.4f ", Y(j, i));
printf("\n");
}
beta += 0.2;
} else {
printf("Error from nag_ode_bvp_fd_nonlin_fixedbc (d02gac).\n%s\n",
fail.message);
exit_status = 1;
}
}
END:
NAG_FREE(u);
NAG_FREE(x);
NAG_FREE(y);
NAG_FREE(v);
return exit_status;
}
static void NAG_CALL fcn(Integer neq, double x, const double y[], double f[],
Nag_User *comm) {
double *beta = (double *)comm->p;
f[0] = y[1];
f[1] = y[2];
f[2] = -y[0] * y[2] - *beta * (1.0 - y[1] * y[1]);
}