! D01FDF Example Program Text
! Mark 29.3 Release. NAG Copyright 2023.
Module d01fdfe_mod
! D01FDF Example Program Module:
! Parameters and User-defined Routines
! .. Use Statements ..
Use nag_library, Only: nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Accessibility Statements ..
Private
Public :: f, region
! .. Parameters ..
Integer, Parameter, Public :: nout = 6
Contains
Function f(ndim,x)
! .. Function Return Value ..
Real (Kind=nag_wp) :: f
! .. Scalar Arguments ..
Integer, Intent (In) :: ndim
! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(ndim)
! .. Intrinsic Procedures ..
Intrinsic :: abs, sqrt, sum
! .. Executable Statements ..
f = 1.0E0_nag_wp/sqrt(abs(2.25E0_nag_wp-sum(x(1:ndim)**2)))
Return
End Function f
Subroutine region(ndim,x,j,c,d)
! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c, d
Integer, Intent (In) :: j, ndim
! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(ndim)
! .. Intrinsic Procedures ..
Intrinsic :: abs, sqrt, sum
! .. Executable Statements ..
If (j>1) Then
d = sqrt(abs(2.25E0_nag_wp-sum(x(1:(j-1))**2)))
c = -d
Else
c = -1.5E0_nag_wp
d = 1.5E0_nag_wp
End If
Return
End Subroutine region
End Module d01fdfe_mod
Program d01fdfe
! D01FDF Example Main Program
! .. Use Statements ..
Use d01fdfe_mod, Only: f, nout, region
Use nag_library, Only: d01fdf, d01fdv, nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Local Scalars ..
Real (Kind=nag_wp) :: r0, result, sigma, u
Integer :: ifail, limit, ncalls, ndim
! .. Executable Statements ..
Write (nout,*) 'D01FDF Example Program Results'
ndim = 3
limit = 8000
u = 1.5E0_nag_wp
sigma = 1.5E0_nag_wp
r0 = 0.9E0_nag_wp
ifail = 0
Call d01fdf(ndim,f,sigma,d01fdv,limit,r0,u,result,ncalls,ifail)
Write (nout,*)
Write (nout,*) 'Sphere-to-sphere transformation'
Write (nout,*)
Write (nout,99999) 'Estimated value of the integral = ', result
Write (nout,99998) 'Number of integrand evaluations = ', ncalls
Write (nout,*)
Write (nout,*) 'Product region transformation'
sigma = -1.0E0_nag_wp
r0 = 0.8E0_nag_wp
ifail = 0
Call d01fdf(ndim,f,sigma,region,limit,r0,u,result,ncalls,ifail)
Write (nout,*)
Write (nout,99999) 'Estimated value of the integral = ', result
Write (nout,99998) 'Number of integrand evaluations = ', ncalls
99999 Format (1X,A,F9.3)
99998 Format (1X,A,I5)
End Program d01fdfe