! C05RBF Example Program Text
! Mark 29.3 Release. NAG Copyright 2023.
Module c05rbfe_mod
! C05RBF Example Program Module:
! Parameters and User-defined Routines
! .. Use Statements ..
Use nag_library, Only: nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Accessibility Statements ..
Private
Public :: fcn
! .. Parameters ..
Integer, Parameter, Public :: n = 9, nout = 6
Contains
Subroutine fcn(n,x,fvec,fjac,iuser,ruser,iflag)
! .. Parameters ..
Real (Kind=nag_wp), Parameter :: coeff(5) = (/-1.0_nag_wp,3.0_nag_wp, &
-2.0_nag_wp,-2.0_nag_wp, &
-1.0_nag_wp/)
! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: n
! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: fjac(n,n), fvec(n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)
! .. Local Scalars ..
Integer :: k
! .. Executable Statements ..
If (iflag/=2) Then
fvec(1:n) = (coeff(2)+coeff(3)*x(1:n))*x(1:n) - coeff(5)
fvec(2:n) = fvec(2:n) + coeff(1)*x(1:(n-1))
fvec(1:(n-1)) = fvec(1:(n-1)) + coeff(4)*x(2:n)
Else
fjac(1:n,1:n) = 0.0_nag_wp
fjac(1,1) = coeff(2) + 2.0_nag_wp*coeff(3)*x(1)
fjac(1,2) = coeff(4)
Do k = 2, n - 1
fjac(k,k-1) = coeff(1)
fjac(k,k) = coeff(2) + 2.0_nag_wp*coeff(3)*x(k)
fjac(k,k+1) = coeff(4)
End Do
fjac(n,n-1) = coeff(1)
fjac(n,n) = coeff(2) + 2.0_nag_wp*coeff(3)*x(n)
End If
! Set iflag negative to terminate execution for any reason.
iflag = 0
Return
End Subroutine fcn
End Module c05rbfe_mod
Program c05rbfe
! C05RBF Example Main Program
! .. Use Statements ..
Use c05rbfe_mod, Only: fcn, n, nout
Use nag_library, Only: c05rbf, dnrm2, nag_wp, x02ajf
! .. Implicit None Statement ..
Implicit None
! .. Local Scalars ..
Real (Kind=nag_wp) :: fnorm, xtol
Integer :: i, ifail
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: fjac(:,:), fvec(:), x(:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)
! .. Intrinsic Procedures ..
Intrinsic :: sqrt
! .. Executable Statements ..
Write (nout,*) 'C05RBF Example Program Results'
Allocate (fjac(n,n),fvec(n),x(n))
! The following starting values provide a rough solution.
x(1:n) = -1.0E0_nag_wp
xtol = sqrt(x02ajf())
ifail = -1
Call c05rbf(fcn,n,x,fvec,fjac,xtol,iuser,ruser,ifail)
If (ifail==0 .Or. ifail==2 .Or. ifail==3 .Or. ifail==4) Then
If (ifail==0) Then
! The NAG name equivalent of dnrm2 is f06ejf
fnorm = dnrm2(n,fvec,1)
Write (nout,*)
Write (nout,99999) 'Final 2-norm of the residuals =', fnorm
Write (nout,*)
Write (nout,*) 'Final approximate solution'
Else
Write (nout,*)
Write (nout,*) 'Approximate solution'
End If
Write (nout,*)
Write (nout,99998)(x(i),i=1,n)
End If
99999 Format (1X,A,E12.4)
99998 Format (1X,3F12.4)
End Program c05rbfe