NAG Library Manual, Mark 29.3
Interfaces:  FL   CL   CPP   AD 

NAG CL Interface Introduction
Example description

nag_correg_quantile_linreg (g02qgc) Example Program Data
Nag_ColMajor                                              :: sorder
Nag_Intercept    Nag_FALSE                                :: intcpt, weighted
 235                       1                       5      :: n, m, ntau
 420.1577  255.8394      800.7990  572.0807      643.3571  459.8177
 541.4117  310.9587     1245.6964  907.3969     2551.6615  863.9199
 901.1575  485.6800     1201.0002  811.5776     1795.3226  831.4407
 639.0802  402.9974      634.4002  427.7975     1165.7734  534.7610
 750.8756  495.5608      956.2315  649.9985      815.6212  392.0502
 945.7989  633.7978     1148.6010  860.6002     1264.2066  934.9752
 829.3979  630.7566     1768.8236 1143.4211     1095.4056  813.3081
 979.1648  700.4409     2822.5330 2032.6792      447.4479  263.7100
1309.8789  830.9586      922.3548  590.6183     1178.9742  769.0838
1492.3987  815.3602     2293.1920 1570.3911      975.8023  630.5863
 502.8390  338.0014      627.4726  483.4800     1017.8522  645.9874
 616.7168  412.3613      889.9809  600.4804      423.8798  319.5584
 790.9225  520.0006     1162.2000  696.2021      558.7767  348.4518
 555.8786  452.4015     1197.0794  774.7962      943.2487  614.5068
 713.4412  512.7201      530.7972  390.5984     1348.3002  662.0096
 838.7561  658.8395     1142.1526  612.5619     2340.6174 1504.3708
 535.0766  392.5995     1088.0039  708.7622      587.1792  406.2180
 596.4408  443.5586      484.6612  296.9192     1540.9741  692.1689
 924.5619  640.1164     1536.0201 1071.4627     1115.8481  588.1371
 487.7583  333.8394      678.8974  496.5976     1044.6843  511.2609
 692.6397  466.9583      671.8802  503.3974     1389.7929  700.5600
 997.8770  543.3969      690.4683  357.6411     2497.7860 1301.1451
 506.9995  317.7198      860.6948  430.3376     1585.3809  879.0660
 654.1587  424.3209      873.3095  624.6990     1862.0438  912.8851
 933.9193  518.9617      894.4598  582.5413     2008.8546 1509.7812
 433.6813  338.0014     1148.6470  580.2215      697.3099  484.0605
 587.5962  419.6412      926.8762  543.8807      571.2517  399.6703
 896.4746  476.3200      839.0414  588.6372      598.3465  444.1001
 454.4782  386.3602      829.4974  627.9999      461.0977  248.8101
 584.9989  423.2783     1264.0043  712.1012      977.1107  527.8014
 800.7990  503.3572     1937.9771  968.3949      883.9849  500.6313
 502.4369  354.6389      698.8317  482.5816      718.3594  436.8107
 713.5197  497.3182      920.4199  593.1694      543.8971  374.7990
 906.0006  588.5195     1897.5711 1033.5658     1587.3480  726.3921
 880.5969  654.5971      891.6824  693.6795     4957.8130 1827.2000
 796.8289  550.7274      889.6784  693.6795      969.6838  523.4911
 854.8791  528.3770     1221.4818  761.2791      419.9980  334.9998
1167.3716  640.4813      544.5991  361.3981      561.9990  473.2009
 523.8000  401.3204     1031.4491  628.4522      689.5988  581.2029
 670.7792  435.9990     1462.9497  771.4486     1398.5203  929.7540
 377.0584  276.5606      830.4353  757.1187      820.8168  591.1974
 851.5430  588.3488      975.0415  821.5970      875.1716  637.5483
1121.0937  664.1978     1337.9983 1022.3202     1392.4499  674.9509
 625.5179  444.8602      867.6427  679.4407     1256.3174  776.7589
 805.5377  462.8995      725.7459  538.7491     1362.8590  959.5170
 558.5812  377.7792      989.0056  679.9981     1999.2552 1250.9643
 884.4005  553.1504     1525.0005  977.0033     1209.4730  737.8201
1257.4989  810.8962      672.1960  561.2015     1125.0356  810.6772
2051.1789 1067.9541      923.3977  728.3997     1827.4010  983.0009
1466.3330 1049.8788      472.3215  372.3186     1014.1540  708.8968
 730.0989  522.7012      590.7601  361.5210      880.3944  633.1200
2432.3910 1424.8047      831.7983  620.8006      873.7375  631.7982
 940.9218  517.9196     1139.4945  819.9964      951.4432  608.6419
1177.8547  830.9586      507.5169  360.8780      473.0022  300.9999
1222.5939  925.5795      576.1972  395.7608      601.0030  377.9984
1519.5811 1162.0024      696.5991  442.0001      713.9979  397.0015
 687.6638  383.4580      650.8180  404.0384      829.2984  588.5195
 953.1192  621.1173      949.5802  670.7993      959.7953  681.7616
 953.1192  621.1173      497.1193  297.5702     1212.9613  807.3603
 953.1192  621.1173      570.1674  353.4882      958.8743  696.8011
 939.0418  548.6002      724.7306  383.9376     1129.4431  811.1962
1283.4025  745.2353      408.3399  284.8008     1943.0419 1305.7201
1511.5789  837.8005      638.6713  431.1000      539.6388  442.0001
1342.5821  795.3402     1225.7890  801.3518      463.5990  353.6013
 511.7980  418.5976      715.3701  448.4513      562.6400  468.0008
 689.7988  508.7974      800.4708  577.9111      736.7584  526.7573
1532.3074  883.2780      975.5974  570.5210     1415.4461  890.2390
1056.0808  742.5276     1613.7565  865.3205     2208.7897 1318.8033
 387.3195  242.3202      608.5019  444.5578      636.0009  331.0005
 387.3195  242.3202      958.6634  680.4198      759.4010  416.4015
 410.9987  266.0010      835.9426  576.2779     1078.8382  596.8406
 499.7510  408.4992     1024.8177  708.4787      748.6413  429.0399
 832.7554  614.7588     1006.4353  734.2356      987.6417  619.6408
 614.9986  385.3184      726.0000  433.0010      788.0961  400.7990
 887.4658  515.6200      494.4174  327.4188     1020.0225  775.0209
1595.1611 1138.1620      776.5958  485.5198     1230.9235  772.7611
1807.9520  993.9630      415.4407  305.4390      440.5174  306.5191
 541.2006  299.1993      581.3599  468.0008      743.0772  522.6019
1057.6767  750.3202      :: (x[1..m],y)[i] for i = 0...n-1
1                        :: isx[1..m]
0.10 0.25 0.50 0.75 0.90 :: tau[1..ntau]
Return Residuals = Yes
Matrix Returned = Covariance
Interval Method = IID