nag_correg_lmm_init (g02jfc) Example Program Results Number of observations = 90 Total number of random factors = 159 Total number of fixed factors = 4 Rank of X = 4 Effective N = 90 -2Log Likelihood = 617.1197 Sigma**2 = 0.0004 Parameter Estimates Random Effects Parameter Estimate Standard Error F03_1.F10_1.F11_1.F12_1 2.1566 3.7320 F03_1.F10_1.F11_2.F12_1 -3.1562 3.8624 F03_1.F10_1.F11_3.F12_1 0.4216 4.0146 F03_1.F10_2.F11_1.F12_1 1.4448 3.3293 F03_1.F10_2.F11_2.F12_1 4.3449 3.6258 F03_1.F10_2.F11_3.F12_1 1.2785 3.4331 F03_2.F10_1.F11_1.F12_1 1.7769 3.8543 F03_2.F10_1.F11_2.F12_1 2.8856 4.6985 F03_2.F10_1.F11_3.F12_1 0.2268 3.4265 F03_2.F10_2.F11_1.F12_1 -2.8634 3.3533 F03_2.F10_2.F11_2.F12_1 -4.4285 3.4096 F03_2.F10_2.F11_3.F12_1 -1.6652 3.8605 F04_1.F10_1.F11_1.F12_1 0.5583 3.0508 F04_1.F10_1.F11_2.F12_1 -4.6811 2.2236 F04_1.F10_1.F11_3.F12_1 -1.0626 2.3505 F04_1.F10_2.F11_1.F12_1 3.6811 2.2253 F04_1.F10_2.F11_2.F12_1 -1.0798 3.1008 F04_2.F10_1.F11_2.F12_1 5.5794 2.1390 F04_2.F10_2.F11_1.F12_1 -1.9988 2.2929 F04_2.F10_2.F11_2.F12_1 1.0536 2.9612 F04_2.F10_2.F11_3.F12_1 0.7332 2.6958 F04_3.F10_1.F11_1.F12_1 0.6776 3.0358 F04_3.F10_1.F11_2.F12_1 -0.9832 2.2841 F04_3.F10_1.F11_3.F12_1 1.2664 2.5276 F04_3.F10_2.F11_1.F12_1 -2.1281 1.9896 F04_3.F10_2.F11_3.F12_1 -0.8547 2.7819 F05_1.F11_1.F12_1 -0.5540 2.8120 F05_1.F11_2.F12_1 1.5151 2.9154 F05_1.F11_3.F12_1 1.7892 3.1214 F05_2.F11_1.F12_1 1.9179 2.7500 F05_2.F11_2.F12_1 -1.7072 2.8715 F05_2.F11_3.F12_1 -1.6473 3.1579 F06_1.F11_1.F12_1 0.6925 3.6813 F06_1.F11_2.F12_1 0.2154 3.9398 F06_1.F11_3.F12_1 -1.2268 3.8853 F06_2.F11_1.F12_1 -2.2632 3.1202 F06_2.F11_2.F12_1 -3.7591 4.2153 F06_2.F11_3.F12_1 4.6247 3.6412 F06_3.F11_1.F12_1 4.3216 3.1131 F06_3.F11_2.F12_1 3.1563 4.7621 F06_3.F11_3.F12_1 -3.1117 3.1648 F07.F12_1 0.6016 0.4634 F08_1.F12_1 1.5887 1.2518 F08_2.F12_1 -0.7951 1.4856 F08_3.F12_1 0.3798 1.6037 F08_4.F12_1 -0.8295 1.6629 F09_1.F12_1 0.5197 1.5510 F09_2.F12_1 0.0156 1.8248 F09_3.F12_1 -0.1723 1.8271 F09_4.F12_1 0.4305 1.9494 F09_5.F12_1 -0.1412 2.0379 F03_1.F10_1.F11_1.F12_2 6.3424 3.3173 F03_1.F10_1.F11_2.F12_2 -10.2379 3.2977 F03_1.F10_1.F11_3.F12_2 4.9485 3.9465 F03_1.F10_2.F11_1.F12_2 1.6342 3.7874 F03_1.F10_2.F11_2.F12_2 -1.3161 3.1545 F03_1.F10_2.F11_3.F12_2 -4.5419 3.2940 F03_2.F10_1.F11_1.F12_2 5.7538 3.3626 F03_2.F10_1.F11_2.F12_2 3.2457 4.0593 F03_2.F10_1.F11_3.F12_2 0.0987 3.5531 F03_2.F10_2.F11_1.F12_2 -2.8693 3.8549 F03_2.F10_2.F11_2.F12_2 8.2719 3.9322 F03_2.F10_2.F11_3.F12_2 -3.9095 4.0163 F04_1.F10_1.F11_2.F12_2 -2.8362 2.2599 F04_1.F10_1.F11_3.F12_2 3.0791 2.1790 F04_1.F10_2.F11_1.F12_2 -0.9274 2.7266 F04_1.F10_2.F11_2.F12_2 -0.4813 2.3705 F04_1.F10_2.F11_3.F12_2 -0.4456 2.6194 F04_2.F10_1.F11_1.F12_2 2.5053 2.6520 F04_2.F10_1.F11_2.F12_2 0.2805 2.9513 F04_2.F10_1.F11_3.F12_2 -1.9469 2.3796 F04_2.F10_2.F11_2.F12_2 2.6668 2.4832 F04_2.F10_2.F11_3.F12_2 -1.5462 2.6514 F04_3.F10_1.F11_1.F12_2 1.2953 2.6978 F04_3.F10_1.F11_2.F12_2 0.3587 2.8663 F04_3.F10_1.F11_3.F12_2 0.4536 2.1984 F04_3.F10_2.F11_1.F12_2 0.5394 2.7100 F04_3.F10_2.F11_3.F12_2 -0.6636 2.8738 F05_1.F11_1.F12_2 4.9921 3.0570 F05_1.F11_2.F12_2 -0.3947 3.0751 F05_1.F11_3.F12_2 -1.0471 3.0732 F05_2.F11_1.F12_2 0.8986 3.0576 F05_2.F11_2.F12_2 0.3750 3.0579 F05_2.F11_3.F12_2 -0.7991 2.9597 F06_1.F11_1.F12_2 7.0091 3.7851 F06_1.F11_2.F12_2 6.9902 3.2654 F06_1.F11_3.F12_2 2.7549 3.8142 F06_2.F11_1.F12_2 -1.3173 3.1348 F06_2.F11_2.F12_2 -1.0683 3.5699 F06_2.F11_3.F12_2 -6.3441 3.2624 F06_3.F11_1.F12_2 6.1881 3.4928 F06_3.F11_2.F12_2 -5.9617 3.6688 F06_3.F11_3.F12_2 -0.1341 3.5956 F07.F12_2 0.1533 0.5196 F08_1.F12_2 1.6630 1.8224 F08_2.F12_2 -0.6835 1.6502 F08_3.F12_2 -0.0959 1.5604 F08_4.F12_2 0.1696 1.4537 F09_1.F12_2 1.0203 2.2901 F09_2.F12_2 6.4354 1.7420 F09_3.F12_2 -1.5942 1.7761 F09_4.F12_2 0.0955 1.9436 F09_5.F12_2 -3.9588 1.7124 F03_1.F10_1.F11_1.F12_3 10.9751 3.2085 F03_1.F10_1.F11_2.F12_3 -3.3222 3.4246 F03_1.F10_1.F11_3.F12_3 8.5902 4.0894 F03_1.F10_2.F11_1.F12_3 -6.2719 3.3190 F03_1.F10_2.F11_2.F12_3 6.6372 3.9751 F03_1.F10_2.F11_3.F12_3 -4.5747 3.9475 F03_2.F10_1.F11_1.F12_3 -1.0674 3.7219 F03_2.F10_1.F11_2.F12_3 -0.3111 3.2221 F03_2.F10_1.F11_3.F12_3 -1.6058 3.2906 F03_2.F10_2.F11_1.F12_3 -9.2923 3.7884 F03_2.F10_2.F11_2.F12_3 -5.4249 3.4039 F03_2.F10_2.F11_3.F12_3 -4.1752 3.0911 F04_1.F10_1.F11_1.F12_3 -2.8350 2.2037 F04_1.F10_1.F11_2.F12_3 1.6131 2.3970 F04_1.F10_1.F11_3.F12_3 3.2575 2.5450 F04_1.F10_2.F11_1.F12_3 -2.8586 2.3728 F04_1.F10_2.F11_2.F12_3 -3.2357 2.8565 F04_1.F10_2.F11_3.F12_3 1.0578 2.5496 F04_2.F10_1.F11_1.F12_3 3.7075 2.7912 F04_2.F10_1.F11_2.F12_3 -3.0099 2.9300 F04_2.F10_2.F11_2.F12_3 1.5313 2.8232 F04_2.F10_2.F11_3.F12_3 -4.4284 2.2029 F04_3.F10_1.F11_1.F12_3 2.2405 2.2796 F04_3.F10_1.F11_2.F12_3 0.2552 2.7229 F04_3.F10_1.F11_3.F12_3 -1.0630 2.8692 F04_3.F10_2.F11_1.F12_3 -2.0316 2.2895 F04_3.F10_2.F11_2.F12_3 2.0854 3.0661 F04_3.F10_2.F11_3.F12_3 0.6214 2.5884 F05_1.F11_1.F12_3 5.4387 3.0091 F05_1.F11_2.F12_3 4.4193 3.1282 F05_1.F11_3.F12_3 0.3594 2.9017 F05_2.F11_1.F12_3 -8.5065 3.1099 F05_2.F11_2.F12_3 -5.7324 3.1435 F05_2.F11_3.F12_3 -1.3169 3.0004 F06_1.F11_1.F12_3 -0.9179 3.7257 F06_1.F11_2.F12_3 -5.9992 3.1431 F06_1.F11_3.F12_3 14.5815 3.8519 F06_2.F11_1.F12_3 -2.4920 3.1176 F06_2.F11_2.F12_3 5.5657 3.2599 F06_2.F11_3.F12_3 -5.2262 3.2578 F06_3.F11_1.F12_3 -2.7772 3.4083 F06_3.F11_2.F12_3 -2.2147 3.1758 F06_3.F11_3.F12_3 -11.2864 3.1821 F07.F12_3 -0.2970 0.5930 F08_1.F12_3 2.6255 1.5201 F08_2.F12_3 0.5048 1.7865 F08_3.F12_3 -0.1518 1.8905 F08_4.F12_3 -4.3754 1.4651 F09_1.F12_3 -4.4219 2.0532 F09_2.F12_3 3.7058 1.9085 F09_3.F12_3 -1.7524 1.7894 F09_4.F12_3 0.4339 1.8210 F09_5.F12_3 -0.6161 2.3700 Fixed Effects Parameter Estimate Standard Error Intercept 1.5913 2.4106 F01_2 -1.5994 0.8183 F02_2 -2.3793 1.0996 F02_3 0.5328 1.1677 Variance Components Component Estimate F03.F10.F11.F12 36.3887 F04.F10.F11.F12 11.4332 F05.F11.F12 19.7359 F06.F11.F12 39.8017 F07.F12 0.4158 F08.F12 5.1644 F09.F12 9.7990