NAG Library Manual, Mark 29.3
Interfaces:  FL   CL   CPP   AD 

NAG CL Interface Introduction
Example description

nag_sparse_real_gen_precon_bdilu (f11dfc) Example Program Results

 Original Matrix
 n     =    9
 nnz   =   33
 nb    =    3
 Block =    1,       order =    6,    start row =    1
 Block =    2,       order =    9,    start row =    1
 Block =    3,       order =    6,    start row =    4

 Factorization
 nnzc  =   73

 Elements of factorization
        i    j           c(i,j)   Index
  C_1  --------------------------------
        1    1      1.56250e-02      34
        1    2     -3.12500e-01      35
        1    4     -3.12500e-01      36
        2    1     -1.87500e-01      37
        2    2      1.65975e-02      38
        2    3     -3.31950e-01      39
        2    5     -3.31950e-01      40
        3    2     -1.99170e-01      41
        3    3      1.66621e-02      42
        3    6     -3.33241e-01      43
        4    1     -1.87500e-01      44
        4    4      1.65975e-02      45
        4    5     -3.31950e-01      46
        5    2     -1.99170e-01      47
        5    4     -1.99170e-01      48
        5    5      1.78466e-02      49
        5    6     -3.56931e-01      50
        6    3     -1.99945e-01      51
        6    5     -2.14159e-01      52
        6    6      1.79475e-02      53
  C_2  --------------------------------
        1    1      1.56250e-02      54
        1    2     -3.12500e-01      55
        1    4     -1.87500e-01      56
        1    5     -3.12500e-01      57
        2    1     -1.87500e-01      58
        2    2      1.65975e-02      59
        2    3     -3.31950e-01      60
        2    6     -1.99170e-01      61
        2    7     -3.31950e-01      62
        3    2     -1.99170e-01      63
        3    3      1.66621e-02      64
        3    8     -1.99945e-01      65
        3    9     -3.33241e-01      66
        4    1     -3.12500e-01      67
        4    4      1.65975e-02      68
        4    6     -3.31950e-01      69
        5    1     -1.87500e-01      70
        5    5      1.65975e-02      71
        5    7     -3.31950e-01      72
        6    2     -3.31950e-01      73
        6    4     -1.99170e-01      74
        6    6      1.78466e-02      75
        6    8     -3.56931e-01      76
        7    2     -1.99170e-01      77
        7    5     -1.99170e-01      78
        7    7      1.78466e-02      79
        7    9     -3.56931e-01      80
        8    3     -3.33241e-01      81
        8    6     -2.14159e-01      82
        8    8      1.79475e-02      83
        9    3     -1.99945e-01      84
        9    7     -2.14159e-01      85
        9    9      1.79475e-02      86
  C_3  --------------------------------
        1    1      1.56250e-02      87
        1    2     -3.12500e-01      88
        1    4     -1.87500e-01      89
        2    1     -1.87500e-01      90
        2    2      1.65975e-02      91
        2    3     -3.31950e-01      92
        2    5     -1.99170e-01      93
        3    2     -1.99170e-01      94
        3    3      1.66621e-02      95
        3    6     -1.99945e-01      96
        4    1     -3.12500e-01      97
        4    4      1.65975e-02      98
        4    5     -3.31950e-01      99
        5    2     -3.31950e-01     100
        5    4     -1.99170e-01     101
        5    5      1.78466e-02     102
        5    6     -3.56931e-01     103
        6    3     -3.33241e-01     104
        6    5     -2.14159e-01     105
        6    6      1.79475e-02     106

 Details of factorized blocks
  k   i     istr(i)   idiag(i)    indb(i)
  1   1         34         34          1
      2         37         38          2
      3         41         42          3
      4         44         45          4
      5         47         49          5
      6         51         53          6
 ---------------------------------------
  2   7         54         54          4
      8         58         59          5
      9         63         64          6
     10         67         68          1
     11         70         71          7
     12         73         75          2
     13         77         79          8
     14         81         83          3
     15         84         86          9
 ---------------------------------------
  3  16         87         87          7
     17         90         91          8
     18         94         95          9
     19         97         98          4
     20        100        102          5
     21        104        106          6
 ---------------------------------------