NAG Library Manual, Mark 29.3
Interfaces:  FL   CL   CPP   AD 

NAG FL Interface Introduction
Example description

 E04RJF Example Program Results

 Reading MPS file:  e04rjfe.opt
 
 MPSX INPUT LISTING
 ------------------
 Searching for indicator line
 Line          1: Found NAME indicator line
                  Query mode - Ignoring NAME data.
 Line          2: Found ROWS indicator line
                  Query mode - Counting ROWS data.
 Line          7: Found COLUMNS indicator line
                  Query mode - Counting COLUMNS data.
 Line         26: Found RHS indicator line
                  Query mode - Ignoring RHS data.
 Line         31: Found RANGES indicator line
                  Query mode - Ignoring RANGES data.
 Line         35: Found BOUNDS indicator line
                  Query mode - Ignoring BOUNDS data.
 Line         54: Found QUADOBJ indicator line
                  Query mode - Counting QUADOBJ data.
                  Query mode - End of QUADOBJ data. Exit
 
 MPSX INPUT LISTING
 ------------------
 Searching for indicator line
 Line          1: Found NAME indicator line
 Line          2: Found ROWS indicator line
 Line          7: Found COLUMNS indicator line
 Line         26: Found RHS indicator line
 Line         31: Found RANGES indicator line
 Line         35: Found BOUNDS indicator line
 Line         54: Found QUADOBJ indicator line
 Line         64: Found ENDATA indicator line
 MPS/QPS file read
 The problem was set-up
 
 --------------------------------
  E04SV, NLP-SDP Solver (Pennon)
 --------------------------------
 
 Problem Statistics
   No of variables                  9
     free (unconstrained)           0
     bounded                        9
   No of lin. constraints           3
     nonzeroes                     27
   No of matrix inequal.            0
     detected matrix inq.           0
       linear                       0
       nonlinear                    0
       max. dimension               0
     detected normal inq.           0
       linear                       0
       nonlinear                    0
   Objective function       Quadratic
 
 --------------------------------------------------------------
  it|  objective |  optim  |   feas  |  compl  | pen min |inner
 --------------------------------------------------------------
   0  0.00000E+00  4.70E+00  0.00E+00  1.00E+01  1.00E+00   0
   1 -6.76762E+00  9.46E-04  0.00E+00  6.25E-01  1.00E+00   4
   2 -7.82467E+00  1.79E-03  3.69E-02  1.45E-01  4.65E-01   4
   3 -8.02059E+00  7.27E-03  2.27E-02  3.38E-02  2.16E-01   4
   4 -8.06187E+00  3.18E-03  5.75E-03  7.86E-03  1.01E-01   4
   5 -8.06653E+00  1.30E-03  1.13E-03  1.83E-03  4.68E-02   5
   6 -8.06739E+00  6.98E-03  1.42E-04  4.25E-04  2.18E-02   3
   7 -8.06775E+00  2.16E-04  2.80E-05  9.89E-05  1.01E-02   2
   8 -8.06778E+00  4.44E-05  6.94E-05  2.30E-05  4.71E-03   1
   9 -8.06778E+00  1.88E-06  1.15E-05  5.35E-06  2.19E-03   1
  10 -8.06778E+00  4.38E-08  1.52E-06  1.24E-06  1.02E-03   1
  11 -8.06778E+00  6.52E-10  1.74E-07  2.90E-07  4.74E-04   1
  12 -8.06778E+00  8.14E-12  1.90E-08  6.73E-08  2.21E-04   1
 --------------------------------------------------------------
 Status: converged, an optimal solution found
 --------------------------------------------------------------
 Final objective value               -8.067778E+00
 Relative precision                   1.518278E-09
 Optimality                           8.140948E-12
 Feasibility                          1.900689E-08
 Complementarity                      6.734260E-08
 Iteration counts
   Outer iterations                             12
   Inner iterations                             31
   Linesearch steps                             43
 Evaluation counts
   Augm. Lagr. values                           56
   Augm. Lagr. gradient                         44
   Augm. Lagr. hessian                          31
 --------------------------------------------------------------

 Optimal solution:
 X =      2.00    -0.23    -0.27
 X =     -0.30    -0.10     2.00
 X =      2.00    -1.78    -0.46