Program f11jdfe
! F11JDF Example Program Text
! Mark 29.2 Release. NAG Copyright 2023.
! .. Use Statements ..
Use nag_library, Only: f11gdf, f11gef, f11gff, f11jdf, f11xef, nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, omega, sigerr, sigmax, &
sigtol, stplhs, stprhs, tol
Integer :: i, ifail, ifail1, irevcm, iterm, &
itn, its, liwork, lwneed, lwork, &
maxitn, maxits, monit, n, nnz
Character (1) :: ckjdf, ckxef, norm, precon, sigcmp, &
weight
Character (6) :: method
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), rdiag(:), wgt(:), &
work(:), x(:)
Integer, Allocatable :: icol(:), irow(:), iwork(:)
! .. Executable Statements ..
Write (nout,*) 'F11JDF Example Program Results'
! Skip heading in data file
Read (nin,*)
! Read algorithmic parameters
Read (nin,*) n
Read (nin,*) nnz
liwork = n + 1
lwork = 6*n + 120
Allocate (a(nnz),b(n),rdiag(n),wgt(n),work(lwork),x(n),icol(nnz), &
irow(nnz),iwork(liwork))
Read (nin,*) method
Read (nin,*) precon, sigcmp, norm, iterm
Read (nin,*) tol, maxitn
Read (nin,*) anorm, sigmax
Read (nin,*) sigtol, maxits
Read (nin,*) omega
! Read the matrix A
Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)
End Do
! Read right-hand side vector b and initial approximate solution x
Read (nin,*) b(1:n)
Read (nin,*) x(1:n)
! Call F11GDF to initialize solver
weight = 'N'
monit = 0
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call f11gdf(method,precon,sigcmp,norm,weight,iterm,n,tol,maxitn,anorm, &
sigmax,sigtol,maxits,monit,lwneed,work,lwork,ifail)
! Calculate reciprocal diagonal matrix elements.
iwork(1:n) = 0
Do i = 1, nnz
If (irow(i)==icol(i)) Then
iwork(irow(i)) = iwork(irow(i)) + 1
If (a(i)/=0.0E0_nag_wp) Then
rdiag(irow(i)) = 1.0E0_nag_wp/a(i)
Else
Write (nout,*) 'Matrix has a zero diagonal element'
Go To 100
End If
End If
End Do
Do i = 1, n
If (iwork(i)==0) Then
Write (nout,*) 'Matrix has a missing diagonal element'
Go To 100
End If
If (iwork(i)>=2) Then
Write (nout,*) 'Matrix has a multiple diagonal element'
Go To 100
End If
End Do
! Call F11GEF to solve the linear system
irevcm = 0
ckxef = 'C'
ckjdf = 'C'
ifail = 1
loop: Do
Call f11gef(irevcm,x,b,wgt,work,lwork,ifail)
If (irevcm/=4) Then
ifail1 = -1
Select Case (irevcm)
Case (1)
! Compute matrix vector product
Call f11xef(n,nnz,a,irow,icol,ckxef,x,b,ifail1)
ckxef = 'N'
Case (2)
! SSOR preconditioning
Call f11jdf(n,nnz,a,irow,icol,rdiag,omega,ckjdf,x,b,iwork,ifail1)
ckjdf = 'N'
End Select
If (ifail1/=0) Then
irevcm = 6
End If
Else If (ifail/=0) Then
Write (nout,99996) ifail
Go To 100
Else
Exit loop
End If
End Do loop
! Termination
Call f11gff(itn,stplhs,stprhs,anorm,sigmax,its,sigerr,work,lwork,ifail)
Write (nout,99999) 'Converged in', itn, ' iterations'
Write (nout,99998) 'Final residual norm =', stplhs
! Output x
Write (nout,99997) x(1:n)
100 Continue
99999 Format (1X,A,I10,A)
99998 Format (1X,A,1P,E16.3)
99997 Format (1X,1P,E16.4)
99996 Format (1X,/,1X,' ** F11GEF returned with IFAIL = ',I5)
End Program f11jdfe