Program f08fufe
! F08FUF Example Program Text
! Mark 29.2 Release. NAG Copyright 2023.
! .. Use Statements ..
Use nag_library, Only: dstebz, nag_wp, x04dbf, zhetrd, zscal, zstein, &
zunmtr
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E0_nag_wp
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=nag_wp) :: vl, vu
Integer :: i, ifail, info, k, lda, ldc, lwork, &
m, n, nsplit
Character (1) :: uplo
! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), c(:,:), tau(:), work(:)
Real (Kind=nag_wp), Allocatable :: d(:), e(:), rwork(:), w(:)
Integer, Allocatable :: iblock(:), ifailv(:), isplit(:), &
iwork(:)
Character (1) :: clabs(1), rlabs(1)
! .. Intrinsic Procedures ..
Intrinsic :: abs, cmplx, conjg, maxloc
! .. Executable Statements ..
Write (nout,*) 'F08FUF Example Program Results'
! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldc = n
lwork = 64*n
Allocate (a(lda,n),c(ldc,n),tau(n),work(lwork),d(n),e(n),rwork(5*n), &
w(n),iblock(n),ifailv(n),isplit(n),iwork(3*n))
! Read A from data file
Read (nin,*) uplo
If (uplo=='U') Then
Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo=='L') Then
Read (nin,*)(a(i,1:i),i=1,n)
End If
! Reduce A to tridiagonal form T = (Q**H)*A*Q
! The NAG name equivalent of zhetrd is f08fsf
Call zhetrd(uplo,n,a,lda,d,e,tau,work,lwork,info)
! Calculate the two smallest eigenvalues of T (same as A)
! The NAG name equivalent of dstebz is f08jjf
Call dstebz('I','B',n,vl,vu,1,2,zero,d,e,m,nsplit,w,iblock,isplit,rwork, &
iwork,info)
Write (nout,*)
If (info>0) Then
Write (nout,*) 'Failure to converge.'
Else
Write (nout,*) 'Eigenvalues'
Write (nout,99999) w(1:m)
! Calculate the eigenvectors of T, storing the result in C
! The NAG name equivalent of zstein is f08jxf
Call zstein(n,d,e,m,w,iblock,isplit,c,ldc,rwork,iwork,ifailv,info)
If (info>0) Then
Write (nout,*) 'Failure to converge.'
Else
! Calculate the eigenvectors of A = Q * (eigenvectors of T)
! The NAG name equivalent of zunmtr is f08fuf
Call zunmtr('Left',uplo,'No transpose',n,m,a,lda,tau,c,ldc,work, &
lwork,info)
! Print eigenvectors
Write (nout,*)
Flush (nout)
! Normalize the eigenvectors so that the element of largest absolute
! value is real.
Do i = 1, m
rwork(1:n) = abs(c(1:n,i))
k = maxloc(rwork(1:n),1)
Call zscal(n,conjg(c(k,i))/cmplx(abs(c(k,i)),kind=nag_wp),c(1,i),1 &
)
End Do
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call x04dbf('General',' ',n,m,c,ldc,'Bracketed','F7.4', &
'Eigenvectors','Integer',rlabs,'Integer',clabs,80,0,ifail)
End If
End If
99999 Format (8X,4(F7.4,11X,:))
End Program f08fufe