#include "dco.hpp"
/* E01EB_A1W_F C++ Header Example Program.
*
* Copyright 2023 Numerical Algorithms Group.
* Mark 29.2, 2023.
*/
#include <iostream>
#include <math.h>
#include <nag.h>
#include <nagad.h>
#include <stdio.h>
#include <string>
using namespace std;
int main()
{
// Scalars
int exit_status = 0;
cout << "E01EB_A1W_F C++ Header Example Program Results\n\n";
// Skip first line of data file
string mystr;
getline(cin, mystr);
// Read number of data points
Integer n;
cin >> n;
// Allocate arrays for data and interpolant
nagad_a1w_w_rtype *x = 0, *y = 0, *f = 0;
Integer * triang = 0;
if (!(x = NAG_ALLOC(n, nagad_a1w_w_rtype)) ||
!(y = NAG_ALLOC(n, nagad_a1w_w_rtype)) ||
!(f = NAG_ALLOC(n, nagad_a1w_w_rtype)) ||
!(triang = NAG_ALLOC(7 * n, Integer)))
{
printf("Allocation failure\n");
exit_status = -1;
}
if (exit_status == 0)
{
// Create AD tape
dco::ga1s<double>::global_tape = dco::ga1s<double>::tape_t::create();
// Create AD configuration data object
Integer ifail = 0;
nag::ad::handle_t ad_handle;
// Read data and register variables
for (int i = 0; i < n; i++)
{
double xr, yr, fr;
cin >> xr >> yr >> fr;
x[i] = xr;
y[i] = yr;
f[i] = fr;
dco::ga1s<double>::global_tape->register_variable(x[i]);
dco::ga1s<double>::global_tape->register_variable(y[i]);
dco::ga1s<double>::global_tape->register_variable(f[i]);
}
ifail = 0;
nag::ad::e01ea(n, x, y, triang, ifail);
// Evaluate interpolant and derivatives at a mid-point
nagad_a1w_w_rtype px[1], py[1], pf[1];
double xint, yint;
xint = 0.5 * (dco::value(x[n / 2 - 1]) + dco::value(x[n / 2]));
yint = 0.5 * (dco::value(y[n / 2 - 1]) + dco::value(y[n / 2]));
px[0] = xint;
py[0] = yint;
// Call the AD routine
Integer m = 1;
ifail = 0;
nag::ad::e01eb(ad_handle, m, n, x, y, f, triang, px, py, pf, ifail);
cout << "\n Interpolant point: x = " << xint << " y = " << yint << endl;
cout.precision(5);
cout << " Interpolated value = " << dco::value(pf[0]) << endl;
// Setup evaluation of derivatives via adjoints.
double inc = 1.0;
dco::derivative(pf[0]) += inc;
ifail = 0;
dco::ga1s<double>::global_tape->sparse_interpret() = true;
dco::ga1s<double>::global_tape->interpret_adjoint();
cout << "\n Derivatives calculated: First order adjoints\n";
cout << " Computational mode : algorithmic\n";
// Get derivatives
cout << "\n Derivatives of fitted value w.r.t. data points:\n\n";
cout << " i d/dx d/dy d/df\n";
cout.setf(ios::scientific, ios::floatfield);
cout.precision(4);
for (int j = 0; j < n; j++)
{
double dx = dco::derivative(x[j]);
double dy = dco::derivative(y[j]);
double df = dco::derivative(f[j]);
cout.width(5);
cout << j + 1;
cout.width(12);
cout << dx;
cout.width(12);
cout << dy;
cout.width(12);
cout << df << endl;
}
dco::ga1s<double>::tape_t::remove(dco::ga1s<double>::global_tape);
}
NAG_FREE(x);
NAG_FREE(y);
NAG_FREE(f);
NAG_FREE(triang);
return exit_status;
}