NAG Library Manual, Mark 29.2
Interfaces:  FL   CL   CPP   AD 

NAG FL Interface Introduction
Example description
!   D03PEF Example Program Text
!   Mark 29.2 Release. NAG Copyright 2023.

    Module d03pefe_mod

!     D03PEF Example Program Module:
!            Parameters and User-defined Routines

!     .. Use Statements ..
      Use nag_library, Only: nag_wp
!     .. Implicit None Statement ..
      Implicit None
!     .. Accessibility Statements ..
      Private
      Public                           :: bndary, exact, pdedef, uinit
!     .. Parameters ..
      Real (Kind=nag_wp), Parameter    :: half = 0.5_nag_wp
      Real (Kind=nag_wp), Parameter    :: one = 1.0_nag_wp
      Integer, Parameter, Public       :: nin = 5, nleft = 1, nout = 6,        &
                                          npde = 2
    Contains
      Subroutine uinit(npde,npts,x,u)
!       Routine for PDE initial values

!       .. Scalar Arguments ..
        Integer, Intent (In)           :: npde, npts
!       .. Array Arguments ..
        Real (Kind=nag_wp), Intent (Out) :: u(npde,npts)
        Real (Kind=nag_wp), Intent (In) :: x(npts)
!       .. Local Scalars ..
        Integer                        :: i
!       .. Intrinsic Procedures ..
        Intrinsic                      :: exp, sin
!       .. Executable Statements ..
        Do i = 1, npts
          u(1,i) = exp(x(i))
          u(2,i) = sin(x(i))
        End Do
        Return
      End Subroutine uinit
      Subroutine pdedef(npde,t,x,u,ut,ux,res,ires)

!       .. Scalar Arguments ..
        Real (Kind=nag_wp), Intent (In) :: t, x
        Integer, Intent (Inout)        :: ires
        Integer, Intent (In)           :: npde
!       .. Array Arguments ..
        Real (Kind=nag_wp), Intent (Out) :: res(npde)
        Real (Kind=nag_wp), Intent (In) :: u(npde), ut(npde), ux(npde)
!       .. Executable Statements ..
        If (ires==-1) Then
          res(1) = ut(1)
          res(2) = ut(2)
        Else
          res(1) = ut(1) + ux(1) + ux(2)
          res(2) = ut(2) + 4.0_nag_wp*ux(1) + ux(2)
        End If
        Return
      End Subroutine pdedef
      Subroutine bndary(npde,t,ibnd,nobc,u,ut,res,ires)

!       .. Scalar Arguments ..
        Real (Kind=nag_wp), Intent (In) :: t
        Integer, Intent (In)           :: ibnd, nobc, npde
        Integer, Intent (Inout)        :: ires
!       .. Array Arguments ..
        Real (Kind=nag_wp), Intent (Out) :: res(nobc)
        Real (Kind=nag_wp), Intent (In) :: u(npde), ut(npde)
!       .. Local Scalars ..
        Real (Kind=nag_wp)             :: t1, t3
!       .. Intrinsic Procedures ..
        Intrinsic                      :: exp, sin
!       .. Executable Statements ..
        If (ires==-1) Then
          res(1) = 0.0_nag_wp
        Else If (ibnd==0) Then
          t3 = -3.0_nag_wp*t
          t1 = t
          res(1) = u(1) - half*((exp(t3)+exp(t1))+half*(sin(t3)-sin(t1)))
        Else
          t3 = one - 3.0_nag_wp*t
          t1 = one + t
          res(1) = u(2) - ((exp(t3)-exp(t1))+half*(sin(t3)+sin(t1)))
        End If
        Return
      End Subroutine bndary
      Subroutine exact(t,npde,npts,x,u)
!       Exact solution (for comparison purposes)

!       .. Scalar Arguments ..
        Real (Kind=nag_wp), Intent (In) :: t
        Integer, Intent (In)           :: npde, npts
!       .. Array Arguments ..
        Real (Kind=nag_wp), Intent (Out) :: u(npde,npts)
        Real (Kind=nag_wp), Intent (In) :: x(npts)
!       .. Local Scalars ..
        Real (Kind=nag_wp)             :: xt, xt3
        Integer                        :: i
!       .. Intrinsic Procedures ..
        Intrinsic                      :: exp, sin
!       .. Executable Statements ..
        Do i = 1, npts
          xt3 = x(i) - 3.0_nag_wp*t
          xt = x(i) + t
          u(1,i) = half*((exp(xt3)+exp(xt))+half*(sin(xt3)-sin(xt)))
          u(2,i) = (exp(xt3)-exp(xt)) + half*(sin(xt3)+sin(xt))
        End Do
        Return
      End Subroutine exact
    End Module d03pefe_mod
    Program d03pefe

!     D03PEF Example Main Program

!     .. Use Statements ..
      Use d03pefe_mod, Only: bndary, exact, nin, nleft, nout, npde, pdedef,    &
                             uinit
      Use nag_library, Only: d03pef, nag_wp
!     .. Implicit None Statement ..
      Implicit None
!     .. Local Scalars ..
      Real (Kind=nag_wp)               :: acc, tout, ts
      Integer                          :: i, ifail, ind, it, itask, itrace,    &
                                          lisave, lrsave, neqn, npts, nwkres
!     .. Local Arrays ..
      Real (Kind=nag_wp), Allocatable  :: eu(:,:), rsave(:), u(:,:), x(:)
      Integer, Allocatable             :: isave(:)
!     .. Intrinsic Procedures ..
      Intrinsic                        :: real
!     .. Executable Statements ..
      Write (nout,*) 'D03PEF Example Program Results'
!     Skip heading in data file
      Read (nin,*)
      Read (nin,*) npts
      nwkres = npde*(npts+21+3*npde) + 7*npts + 4
      neqn = npde*npts
      lisave = neqn + 24
      lrsave = 11*neqn + (4*npde+nleft+2)*neqn + 50 + nwkres

      Allocate (eu(npde,npts),rsave(lrsave),u(npde,npts),x(npts),              &
        isave(lisave))
      Read (nin,*) acc
      Read (nin,*) itrace

!     Set spatial-mesh points

      Do i = 1, npts
        x(i) = real(i-1,kind=nag_wp)/real(npts-1,kind=nag_wp)
      End Do

      ind = 0
      itask = 1

      Call uinit(npde,npts,x,u)

!     Loop over output value of t
      Read (nin,*) ts, tout

      Do it = 1, 5
        tout = 0.2_nag_wp*real(it,kind=nag_wp)

!       ifail: behaviour on error exit
!              =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
        ifail = 0
        Call d03pef(npde,ts,tout,pdedef,bndary,u,npts,x,nleft,acc,rsave,       &
          lrsave,isave,lisave,itask,itrace,ind,ifail)

        If (it==1) Then
          Write (nout,99997) acc, npts
          Write (nout,99999) x(5), x(13), x(21), x(29), x(37)
        End If

!       Check against the exact solution

        Call exact(tout,npde,npts,x,eu)

        Write (nout,99998) ts
        Write (nout,99995) u(1,5:37:8)
        Write (nout,99994) eu(1,5:37:8)
        Write (nout,99993) u(2,5:37:8)
        Write (nout,99992) eu(2,5:37:8)
      End Do
      Write (nout,99996) isave(1), isave(2), isave(3), isave(5)

99999 Format (' X        ',5F10.4,/)
99998 Format (' T = ',F5.2)
99997 Format (/,/,'  Accuracy requirement =',E10.3,' Number of points = ',I3,  &
        /)
99996 Format (' Number of integration steps in time = ',I6,/,' Number o',      &
        'f function evaluations = ',I6,/,' Number of Jacobian eval',           &
        'uations =',I6,/,' Number of iterations = ',I6)
99995 Format (' Approx U1',5F10.4)
99994 Format (' Exact  U1',5F10.4)
99993 Format (' Approx U2',5F10.4)
99992 Format (' Exact  U2',5F10.4,/)
    End Program d03pefe