E04US_T2W_F Example Program Results *** e04us Parameters ---------- Linear constraints..... 1 Variables.............. 2 Nonlinear constraints.. 1 Subfunctions........... 44 Infinite bound size.... 1.00E+20 COLD start............. Infinite step size..... 1.00E+20 EPS (machine precision) 1.11E-16 Step limit............. 2.00E+00 Hessian................ NO Linear feasibility..... 1.05E-08 Crash tolerance........ 1.00E-02 Nonlinear feasibility.. 1.05E-08 Optimality tolerance... 3.26E-12 Line search tolerance.. 9.00E-01 Function precision..... 4.37E-15 Derivative level....... 3 Monitoring file........ -1 Verify level........... 0 Major iterations limit. 50 Major print level...... 1 Minor iterations limit. 50 Minor print level...... 0 J'J initial Hessian.... Reset frequency........ 2 Workspace provided is IWORK( 9), WORK( 306). To solve problem we need IWORK( 9), WORK( 306). Verification of the constraint gradients. ----------------------------------------- The constraint Jacobian seems to be ok. The largest relative error was 1.89E-08 in constraint 1 Verification of the objective gradients. ---------------------------------------- The objective Jacobian seems to be ok. The largest relative error was 1.04E-08 in subfunction 3 Exit from NP problem after 6 major iterations, 8 minor iterations. Varbl State Value Lower Bound Upper Bound Lagr Mult Slack V 1 FR 0.419953 0.400000 None . 1.9953E-02 V 2 FR 1.28485 -4.00000 None . 5.285 L Con State Value Lower Bound Upper Bound Lagr Mult Slack L 1 FR 1.70480 1.00000 None . 0.7048 N Con State Value Lower Bound Upper Bound Lagr Mult Slack N 1 LL -9.767742E-13 . None 3.3358E-02 -9.7677E-13 Exit e04us - Optimal solution found. Final objective value = 0.1422983E-01 Optimal solution = 0.01423 Solution point, x 1 2 1 0.4200 1.2848 Derivatives calculated: Second order tangents Computational mode : algorithmic Derivatives: d^2x(1)/druser(1:44)^2 1 2 3 4 5 1 2.5741E-09 9.3099E-09 -3.7407E-04 -3.1987E-04 -3.7407E-04 6 7 8 9 10 1 -3.1987E-04 -5.8175E-05 -5.8175E-05 -4.7541E-05 -2.6329E-05 11 12 13 14 15 1 -5.2694E-06 -2.6562E-06 -2.6562E-06 -3.8116E-07 -2.4296E-07 16 17 18 19 20 1 -2.4296E-07 -6.2070E-08 -4.8557E-08 -6.0522E-10 -6.0522E-10 21 22 23 24 25 1 -1.8652E-09 7.1394E-11 7.1394E-11 1.8547E-10 -1.9250E-12 26 27 28 29 30 1 1.8477E-11 1.8477E-11 1.2594E-12 2.1930E-12 1.2594E-12 31 32 33 34 35 1 2.8451E-13 3.8112E-13 9.7139E-14 9.7139E-14 1.2470E-13 36 37 38 39 40 1 2.6799E-14 2.9807E-14 9.6518E-15 2.8849E-15 3.6909E-15 41 42 43 44 1 1.0278E-15 1.0278E-15 3.6100E-16 1.1645E-16