/* nag_tsa_kalman_sqrt_filt_info_var (g13ecc) Example Program.
*
* Copyright 2023 Numerical Algorithms Group
*
* Mark 29.1, 2023.
*/
#include <nag.h>
#include <stdio.h>
#define AINV(I, J) ainv[(I)*tdainv + J]
#define QINV(I, J) qinv[(I)*tdqinv + J]
#define RINV(I, J) rinv[(I)*tdrinv + J]
#define T(I, J) t[(I)*tdt + J]
#define B(I, J) b[(I)*tdb + J]
#define C(I, J) c[(I)*tdc + J]
int main(void) {
Integer exit_status = 0, i, istep, j, m, n, p, tdainv, tdb, tdc, tdqinv,
tdrinv;
Integer tdt;
Nag_ab_input inp_ab;
double *ainv = 0, *b = 0, *c = 0, *qinv = 0, *rinv = 0, *rinvy = 0;
double *t = 0, tol, *x = 0, *z = 0;
NagError fail;
INIT_FAIL(fail);
printf(
"nag_tsa_kalman_sqrt_filt_info_var (g13ecc) Example Program Results\n");
/* Skip the heading in the data file */
scanf("%*[^\n]");
scanf("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%lf", &n, &m, &p, &tol);
if (n >= 1 && m >= 1 && p >= 1) {
if (!(ainv = NAG_ALLOC(n * n, double)) ||
!(qinv = NAG_ALLOC(m * m, double)) ||
!(rinv = NAG_ALLOC(p * p, double)) || !(t = NAG_ALLOC(n * n, double)) ||
!(b = NAG_ALLOC(n * m, double)) || !(c = NAG_ALLOC(p * n, double)) ||
!(x = NAG_ALLOC(n, double)) || !(z = NAG_ALLOC(m, double)) ||
!(rinvy = NAG_ALLOC(p, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
tdainv = n;
tdqinv = m;
tdrinv = p;
tdt = n;
tdb = m;
tdc = n;
} else {
printf("Invalid n or m or p.\n");
exit_status = 1;
return exit_status;
}
inp_ab = Nag_ab_prod;
/* Read data */
for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)
scanf("%lf", &AINV(i, j));
for (i = 0; i < p; ++i)
for (j = 0; j < n; ++j)
scanf("%lf", &C(i, j));
if (rinv)
for (i = 0; i < p; ++i)
for (j = 0; j < p; ++j)
scanf("%lf", &RINV(i, j));
for (i = 0; i < n; ++i)
for (j = 0; j < m; ++j)
scanf("%lf", &B(i, j));
for (i = 0; i < m; ++i)
for (j = 0; j < m; ++j)
scanf("%lf", &QINV(i, j));
for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)
scanf("%lf", &T(i, j));
for (j = 0; j < m; ++j)
scanf("%lf", &z[j]);
for (j = 0; j < n; ++j)
scanf("%lf", &x[j]);
for (j = 0; j < p; ++j)
scanf("%lf", &rinvy[j]);
/* Perform three iterations of the (Kalman) filter recursion
(in square root information form). */
for (istep = 1; istep <= 3; ++istep)
/* nag_tsa_kalman_sqrt_filt_info_var (g13ecc).
* One iteration step of the time-varying Kalman filter
* recursion using the square root information
* implementation
*/
nag_tsa_kalman_sqrt_filt_info_var(n, m, p, inp_ab, t, tdt, ainv, tdainv, b,
tdb, rinv, tdrinv, c, tdc, qinv, tdqinv,
x, rinvy, z, tol, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_tsa_kalman_sqrt_filt_info_var (g13ecc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf("\nThe inverse of the square root of the state covariance "
"matrix is\n\n");
for (i = 0; i < n; ++i) {
for (j = 0; j < n; ++j)
printf("%8.4f ", T(i, j));
printf("\n");
}
printf("\nThe components of the estimated filtered state are\n\n");
printf("k x(k) \n");
for (i = 0; i < n; ++i) {
printf("%" NAG_IFMT " ", i);
printf(" %8.4f \n", x[i]);
}
END:
NAG_FREE(ainv);
NAG_FREE(qinv);
NAG_FREE(rinv);
NAG_FREE(t);
NAG_FREE(b);
NAG_FREE(c);
NAG_FREE(x);
NAG_FREE(z);
NAG_FREE(rinvy);
return exit_status;
}