/* nag_correg_lars_xtx (g02mbc) Example Program.
*
* Copyright 2022 Numerical Algorithms Group.
*
* Mark 28.7, 2022.
*/
/* Pre-processor includes */
#include <nag.h>
#include <stdio.h>
int main(void) {
/* Integer scalar and array declarations */
Integer i, j, k, ip, ldb, lddtd, m, mnstep, n, nstep, lropt, pm, pm2, pddy;
Integer *isx = 0;
Integer exit_status = 0;
/* NAG structures and types */
NagError fail;
Nag_LARSModelType mtype;
Nag_LARSPreProcess intcpt, pred;
Nag_SumSquare mean;
/* Double scalar and array declarations */
double sw;
double *b = 0, *dtd = 0, *fitsum = 0, *dy = 0, *ropt = 0, *wmean = 0;
/* Character scalar and array declarations */
char cmtype[40], cpred[40], cintcpt[40];
/* Initialize the error structure */
INIT_FAIL(fail);
printf("nag_correg_lars_xtx (g02mbc) Example Program Results\n\n");
/* Skip heading in data file */
scanf("%*[^\n] ");
/* Read in the problem size */
scanf("%" NAG_IFMT "%" NAG_IFMT "%*[^\n] ", &n, &m);
/* Read in the model specification */
scanf("%39s%39s%39s%" NAG_IFMT "%*[^\n] ", cmtype, cpred, cintcpt, &mnstep);
mtype = (Nag_LARSModelType)nag_enum_name_to_value(cmtype);
pred = (Nag_LARSPreProcess)nag_enum_name_to_value(cpred);
intcpt = (Nag_LARSPreProcess)nag_enum_name_to_value(cintcpt);
/* Using all variables */
isx = 0;
ip = m;
/* Optional arguments (using defaults) */
lropt = 0;
ropt = 0;
/* Allocate memory for the augmented matrix [D y] and its cross-product */
pddy = n;
if (!(dy = NAG_ALLOC(pddy * (m + 1), double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read in the augmented matrix [D y] and calculate cross-product matrices
(NB: Datasets with a large number of observations can be split into
blocks with the resulting cross-product matrices being combined
using g02bzc) */
for (i = 0; i < n; i++) {
for (j = 0; j < m + 1; j++) {
scanf("%lf", &dy[j * pddy + i]);
}
}
scanf("%*[^\n] ");
pm = m * (m + 1) / 2;
pm2 = (m + 1) * (m + 2) / 2 - 1;
/* We are calculating the cross-product matrix using nag_correg_ssqmat
(g02buc) which returns it in packed storage */
lddtd = 1;
if (!(wmean = NAG_ALLOC(m + 1, double)) ||
!(dtd = NAG_ALLOC(pm2 + 1, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
mean = (intcpt == Nag_LARS_Centered) ? Nag_AboutMean : Nag_AboutZero;
/* Calculate the cross-product matrices using g02buc */
nag_correg_ssqmat(Nag_ColMajor, mean, n, m + 1, dy, pddy, NULL, &sw, wmean,
dtd, NAGERR_DEFAULT);
/* The first PM+1 elements of dtd contain the cross-products of D
elements PM to PM2-1 contains cross-product of D with y and element PM2
contains cross-product of y with itself */
/* Allocate output arrays */
ldb = ip;
if (!(b = NAG_ALLOC(ldb * (mnstep + 1), double)) ||
!(fitsum = NAG_ALLOC(6 * (mnstep + 1), double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Call g02mbc to the model */
nag_correg_lars_xtx(mtype, pred, intcpt, n, m, dtd, lddtd, isx, &dtd[pm],
dtd[pm2], mnstep, &ip, &nstep, b, ldb, fitsum, ropt,
lropt, &fail);
if (fail.code != NE_NOERROR) {
if (fail.code != NW_OVERFLOW_WARN && fail.code != NW_POTENTIAL_PROBLEM &&
fail.code != NW_LIMIT_REACHED) {
printf("Error from nag_correg_lars_xtx (g02mbc).\n%s\n", fail.message);
exit_status = 1;
goto END;
} else {
printf("Warning from nag_correg_lars_xtx (g02mbc).\n%s\n", fail.message);
exit_status = 2;
}
}
/* Display the parameter estimates */
printf(" Step ");
for (i = 0; i < MAX(ip - 2, 0) * 5; i++)
printf(" ");
printf(" Parameter Estimate\n ");
for (i = 0; i < 5 + ip * 10; i++)
printf("-");
printf("\n");
for (k = 0; k < nstep; k++) {
printf(" %3" NAG_IFMT "", k + 1);
for (j = 0; j < ip; j++) {
printf(" %9.3f", b[k * ldb + j]);
}
printf("\n");
}
printf("\n");
printf(" alpha: %9.3f\n", wmean[m]);
printf("\n");
printf(" Step Sum RSS df Cp Ck Step Size\n ");
for (i = 0; i < 64; i++)
printf("-");
printf("\n");
for (k = 0; k < nstep; k++) {
printf(" %3" NAG_IFMT " %9.3f %9.3f %6.0f %9.3f %9.3f %9.3f\n", k + 1,
fitsum[k * 6], fitsum[k * 6 + 1], fitsum[k * 6 + 2],
fitsum[k * 6 + 3], fitsum[k * 6 + 4], fitsum[k * 6 + 5]);
}
printf("\n");
printf(" sigma^2: %9.3f\n", fitsum[nstep * 6 + 4]);
END:
NAG_FREE(dy);
NAG_FREE(wmean);
NAG_FREE(dtd);
NAG_FREE(b);
NAG_FREE(fitsum);
NAG_FREE(ropt);
return (exit_status);
}