C09FZF Example Program Results MLDWT :: Wavelet : Haar End mode : Period M : 4 N : 4 FR : 4 Original data A : Frame 1 : 0.0100 0.0100 0.0100 0.0100 1.0000 1.0000 1.0000 1.0000 0.0100 0.0100 0.0100 0.0100 1.0000 1.0000 1.0000 1.0000 Frame 2 : 1.0000 1.0000 1.0000 1.0000 0.0100 0.0100 0.0100 0.0100 1.0000 1.0000 1.0000 1.0000 0.0100 0.0100 0.0100 0.0100 Frame 3 : 0.0100 0.0100 0.0100 0.0100 1.0000 1.0000 1.0000 1.0000 0.0100 0.0100 0.0100 0.0100 1.0000 1.0000 1.0000 1.0000 Frame 4 : 1.0000 1.0000 1.0000 1.0000 0.0100 0.0100 0.0100 0.0100 1.0000 1.0000 1.0000 1.0000 0.0100 0.0100 0.0100 0.0100 Original data plus noise AN : Frame 1 : 0.0135 -0.0093 -0.0004 0.0378 1.0015 0.9842 1.0007 0.9889 -0.0017 0.0139 0.0138 -0.0049 0.9899 1.0070 1.0049 0.9983 Frame 2 : 1.0094 1.0080 0.9921 0.9902 0.0105 -0.0009 0.0160 0.0197 0.9994 1.0044 0.9956 1.0014 0.0091 -0.0084 0.0187 0.0023 Frame 3 : 0.0058 -0.0053 0.0011 0.0159 1.0113 0.9894 1.0018 0.9992 0.0106 0.0082 0.0093 0.0153 1.0023 1.0157 1.0084 0.9834 Frame 4 : 0.9969 1.0010 0.9904 0.9968 0.0227 0.0022 0.0062 0.0214 0.9948 0.9981 0.9951 0.9968 0.0121 0.0103 0.0114 0.0206 Without denoising Mean Square Error is 0.000081 Number of coefficients denoised is 55 out of 63 With denoising Mean Square Error is 0.000015 Reconstruction of denoised input D : Frame 1 : 0.0053 0.0053 0.0166 0.0166 1.0026 1.0026 0.9913 0.9913 0.0055 0.0055 0.0077 0.0077 1.0025 1.0025 1.0003 1.0003 Frame 2 : 1.0026 1.0026 0.9913 0.9913 0.0053 0.0053 0.0166 0.0166 1.0025 1.0025 1.0003 1.0003 0.0055 0.0055 0.0077 0.0077 Frame 3 : 0.0073 0.0073 0.0110 0.0110 1.0006 1.0006 0.9969 0.9969 0.0078 0.0078 0.0131 0.0131 1.0002 1.0002 0.9949 0.9949 Frame 4 : 1.0006 1.0006 0.9969 0.9969 0.0073 0.0073 0.0110 0.0110 1.0002 1.0002 0.9949 0.9949 0.0078 0.0078 0.0131 0.0131