NAG Library Manual, Mark 28.6
Interfaces:  FL   CL   CPP   AD 

NAG CL Interface Introduction
Example description
/* nag_lapacklin_zsyrfs (f07nvc) Example Program.
 *
 * Copyright 2022 Numerical Algorithms Group.
 *
 * Mark 28.6, 2022.
 */

#include <nag.h>
#include <stdio.h>

int main(void) {
  /* Scalars */
  Integer i, j, n, nrhs, pda, pdaf, pdb, pdx;
  Integer ferr_len, berr_len;
  Integer exit_status = 0;
  Nag_UploType uplo;
  NagError fail;
  Nag_OrderType order;
  /* Arrays */
  Integer *ipiv = 0;
  char nag_enum_arg[40];
  Complex *a = 0, *af = 0, *b = 0, *x = 0;
  double *berr = 0, *ferr = 0;

#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J - 1) * pda + I - 1]
#define AF(I, J) af[(J - 1) * pdaf + I - 1]
#define B(I, J) b[(J - 1) * pdb + I - 1]
#define X(I, J) x[(J - 1) * pdx + I - 1]
  order = Nag_ColMajor;
#else
#define A(I, J) a[(I - 1) * pda + J - 1]
#define AF(I, J) af[(I - 1) * pdaf + J - 1]
#define B(I, J) b[(I - 1) * pdb + J - 1]
#define X(I, J) x[(I - 1) * pdx + J - 1]
  order = Nag_RowMajor;
#endif

  INIT_FAIL(fail);

  printf("nag_lapacklin_zsyrfs (f07nvc) Example Program Results\n\n");
  /* Skip heading in data file */
  scanf("%*[^\n] ");
  scanf("%" NAG_IFMT "%" NAG_IFMT "%*[^\n] ", &n, &nrhs);
#ifdef NAG_COLUMN_MAJOR
  pda = n;
  pdaf = n;
  pdb = n;
  pdx = n;
#else
  pda = n;
  pdaf = n;
  pdb = nrhs;
  pdx = nrhs;
#endif

  ferr_len = nrhs;
  berr_len = nrhs;

  /* Allocate memory */
  if (!(ipiv = NAG_ALLOC(n, Integer)) || !(a = NAG_ALLOC(n * n, Complex)) ||
      !(af = NAG_ALLOC(n * n, Complex)) ||
      !(b = NAG_ALLOC(n * nrhs, Complex)) ||
      !(x = NAG_ALLOC(n * nrhs, Complex)) ||
      !(berr = NAG_ALLOC(berr_len, double)) ||
      !(ferr = NAG_ALLOC(ferr_len, double))) {
    printf("Allocation failure\n");
    exit_status = -1;
    goto END;
  }

  /* Read A and B from data file, and copy A to AF and B to X */
  scanf(" %39s%*[^\n] ", nag_enum_arg);
  /* nag_enum_name_to_value (x04nac).
   * Converts NAG enum member name to value
   */
  uplo = (Nag_UploType)nag_enum_name_to_value(nag_enum_arg);

  if (uplo == Nag_Upper) {
    for (i = 1; i <= n; ++i) {
      for (j = i; j <= n; ++j)
        scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
    }
    scanf("%*[^\n] ");
  } else {
    for (i = 1; i <= n; ++i) {
      for (j = 1; j <= i; ++j)
        scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
    }
    scanf("%*[^\n] ");
  }
  for (i = 1; i <= n; ++i) {
    for (j = 1; j <= nrhs; ++j)
      scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
  }
  scanf("%*[^\n] ");
  /* Copy A to AF and B to X   */
  if (uplo == Nag_Upper) {
    for (i = 1; i <= n; ++i) {
      for (j = i; j <= n; ++j) {
        AF(i, j).re = A(i, j).re;
        AF(i, j).im = A(i, j).im;
      }
    }
  } else {
    for (i = 1; i <= n; ++i) {
      for (j = 1; j <= i; ++j) {
        AF(i, j).re = A(i, j).re;
        AF(i, j).im = A(i, j).im;
      }
    }
  }
  for (i = 1; i <= n; ++i) {
    for (j = 1; j <= nrhs; ++j) {
      X(i, j).re = B(i, j).re;
      X(i, j).im = B(i, j).im;
    }
  }
  /* Factorize A in the array AF */
  /* nag_lapacklin_zsytrf (f07nrc).
   * Bunch-Kaufman factorization of complex symmetric matrix
   */
  nag_lapacklin_zsytrf(order, uplo, n, af, pdaf, ipiv, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_lapacklin_zsytrf (f07nrc).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
  }
  /* Compute solution in the array X */
  /* nag_lapacklin_zsytrs (f07nsc).
   * Solution of complex symmetric system of linear equations,
   * multiple right-hand sides, matrix already factorized by
   * nag_lapacklin_zsytrf (f07nrc)
   */
  nag_lapacklin_zsytrs(order, uplo, n, nrhs, af, pdaf, ipiv, x, pdx, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_lapacklin_zsytrs (f07nsc).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
  }
  /* Improve solution, and compute backward errors and */
  /* estimated bounds on the forward errors */
  /* nag_lapacklin_zsyrfs (f07nvc).
   * Refined solution with error bounds of complex symmetric
   * system of linear equations, multiple right-hand sides
   */
  nag_lapacklin_zsyrfs(order, uplo, n, nrhs, a, pda, af, pdaf, ipiv, b, pdb, x,
                       pdx, ferr, berr, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_lapacklin_zsyrfs (f07nvc).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
  }
  /* Print solution */
  /* nag_file_print_matrix_complex_gen_comp (x04dbc).
   * Print complex general matrix (comprehensive)
   */
  fflush(stdout);
  nag_file_print_matrix_complex_gen_comp(
      order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x, pdx,
      Nag_BracketForm, "%7.4f", "Solution(s)", Nag_IntegerLabels, 0,
      Nag_IntegerLabels, 0, 80, 0, 0, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_file_print_matrix_complex_gen_comp (x04dbc).\n%s\n",
           fail.message);
    exit_status = 1;
    goto END;
  }
  printf("\nBackward errors (machine-dependent)\n");
  for (j = 1; j <= nrhs; ++j)
    printf("%11.1e%s", berr[j - 1], j % 4 == 0 ? "\n" : " ");
  printf("\nEstimated forward error bounds "
         "(machine-dependent)\n");
  for (j = 1; j <= nrhs; ++j)
    printf("%11.1e%s", ferr[j - 1], j % 4 == 0 ? "\n" : " ");
  printf("\n");
END:
  NAG_FREE(ipiv);
  NAG_FREE(a);
  NAG_FREE(af);
  NAG_FREE(b);
  NAG_FREE(x);
  NAG_FREE(berr);
  NAG_FREE(ferr);
  return exit_status;
}