NAG Library Manual, Mark 28.6
```/* nag_linsys_complex_herm_packed_solve (f04cjc) Example Program.
*
* Copyright 2022 Numerical Algorithms Group.
*
* Mark 28.6, 2022.
*/

#include <nag.h>
#include <stdio.h>

int main(void) {

/* Scalars */
double errbnd, rcond;
Integer exit_status, i, j, n, nrhs, pdb;

/* Arrays */
char nag_enum_arg[40];
char *clabs = 0, *rlabs = 0;
Complex *ap = 0, *b = 0;
Integer *ipiv = 0;

/* Nag types */
NagError fail;
Nag_OrderType order;
Nag_UploType uplo;

#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I, J) ap[J * (J - 1) / 2 + I - 1]
#define A_LOWER(I, J) ap[(2 * n - J) * (J - 1) / 2 + I - 1]
#define B(I, J) b[(J - 1) * pdb + I - 1]
order = Nag_ColMajor;
#else
#define A_LOWER(I, J) ap[I * (I - 1) / 2 + J - 1]
#define A_UPPER(I, J) ap[(2 * n - I) * (I - 1) / 2 + J - 1]
#define B(I, J) b[(I - 1) * pdb + J - 1]
order = Nag_RowMajor;
#endif

exit_status = 0;
INIT_FAIL(fail);

printf(
"nag_linsys_complex_herm_packed_solve (f04cjc) Example Program Results\n\n");

/* Skip heading in data file */
scanf("%*[^\n] ");
scanf("%" NAG_IFMT "%" NAG_IFMT "%*[^\n] ", &n, &nrhs);
if (n > 0 && nrhs > 0) {
/* Allocate memory */
if (!(clabs = NAG_ALLOC(2, char)) || !(rlabs = NAG_ALLOC(2, char)) ||
!(ap = NAG_ALLOC(n * (n + 1) / 2, Complex)) ||
!(b = NAG_ALLOC(n * nrhs, Complex)) ||
!(ipiv = NAG_ALLOC(n, Integer))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
#ifdef NAG_COLUMN_MAJOR
pdb = n;
#else
pdb = nrhs;
#endif
/* Read A and B from data file */
} else {
printf("%s\n", "n and/or nrhs too small");
exit_status = 1;
return exit_status;
}
scanf("%39s%*[^\n] ", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/
uplo = (Nag_UploType)nag_enum_name_to_value(nag_enum_arg);

/* Read the upper or lower triangular part of the matrix A from */
/* data file */

if (uplo == Nag_Upper) {
for (i = 1; i <= n; ++i) {
for (j = i; j <= n; ++j) {
scanf(" ( %lf , %lf )", &A_UPPER(i, j).re, &A_UPPER(i, j).im);
}
}
scanf("%*[^\n] ");
} else {
for (i = 1; i <= n; ++i) {
for (j = 1; j <= i; ++j) {
scanf(" ( %lf , %lf )", &A_LOWER(i, j).re, &A_LOWER(i, j).im);
}
}
scanf("%*[^\n] ");
}

/* Read B from data file */
for (i = 1; i <= n; ++i) {
for (j = 1; j <= nrhs; ++j) {
scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
}
}
scanf("%*[^\n] ");

/* Solve the equations AX = B for X */
/* nag_linsys_complex_herm_packed_solve (f04cjc).
* Computes the solution and error-bound to a complex
* Hermitian system of linear equations, packed storage
*/
nag_linsys_complex_herm_packed_solve(order, uplo, n, nrhs, ap, ipiv, b, pdb,
&rcond, &errbnd, &fail);
if (fail.code == NE_NOERROR) {
/* Print solution, estimate of condition number and approximate */
/* error bound */
/* nag_file_print_matrix_complex_gen_comp (x04dbc).
* Print complex general matrix (comprehensive)
*/
fflush(stdout);
nag_file_print_matrix_complex_gen_comp(
order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, b, pdb,
Nag_BracketForm, 0, "Solution", Nag_IntegerLabels, 0, Nag_IntegerLabels,
0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR) {
printf(
"Error from nag_file_print_matrix_complex_gen_comp (x04dbc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf("\n");
printf("%s\n%8s%10.1e\n", "Estimate of condition number", "", 1.0 / rcond);
printf("\n\n");
printf("%s\n%8s%10.1e\n\n",
"Estimate of error bound for computed solutions", "", errbnd);
} else if (fail.code == NE_RCOND) {
/* Matrix A is numerically singular.  Print estimate of */
/* reciprocal of condition number and solution */
printf("\n");
printf("%s\n%8s%10.1e\n\n\n", "Estimate of reciprocal of condition number",
"", rcond);
/* nag_file_print_matrix_complex_gen_comp (x04dbc), see above. */
fflush(stdout);
nag_file_print_matrix_complex_gen_comp(
order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, b, pdb,
Nag_BracketForm, 0, "Solution", Nag_IntegerLabels, 0, Nag_IntegerLabels,
0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR) {
printf(
"Error from nag_file_print_matrix_complex_gen_comp (x04dbc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
} else if (fail.code == NE_SINGULAR) {
/* The upper triangular matrix U is exactly singular.  Print */
/* details of factorization */
printf("\n");
/* nag_file_print_matrix_complex_packed_comp (x04ddc).
* Print complex packed triangular matrix (comprehensive)
*/
fflush(stdout);
nag_file_print_matrix_complex_packed_comp(
order, Nag_Upper, Nag_NonUnitDiag, n, ap, Nag_BracketForm, 0,
"Details of factorization", Nag_IntegerLabels, 0, Nag_IntegerLabels, 0,
80, 0, 0, &fail);
if (fail.code != NE_NOERROR) {
printf(
"Error from nag_file_print_matrix_complex_packed_comp (x04ddc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}

/* Print pivot indices */
printf("\n");
printf("%s\n", "Pivot indices");
for (i = 1; i <= n; ++i) {
printf("%11" NAG_IFMT "%s", ipiv[i - 1],
i % 7 == 0 || i == n ? "\n" : " ");
}
printf("\n");
} else {
printf("Error from nag_linsys_complex_herm_packed_solve (f04cjc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}

END:
NAG_FREE(clabs);
NAG_FREE(rlabs);
NAG_FREE(ap);
NAG_FREE(b);
NAG_FREE(ipiv);

return exit_status;
}

#undef B
```